irreversible nature of the oxidation in 2a is indicative of the
instability of the Ru(iii) aminocarbene complex in which the
electron-rich methoxy substituent capable of stabilizing the
electron-deficient Ru(iii) metal center is absent, which may lead
to its decomposition.
Further spectroscopic studies to elucidate the nature of the
lowest lying excited state are in progress.
V. W.-W. Y. acknowledges financial support from the
Research Grants Council and The University of Hong Kong.
B. W.-K. C. acknowledges the receipt of a postgraduate
studentship, administered by The University of Hong Kong.
Notes and References
† 2a: Elemental analysis: Calc. for 2a (found) %: C 54.18 (54.22), H 3.85
(3.56), N 9.30 (9.23); positive FABMS: m/z 607 [M 2 PF6]+; 1H NMR (300
MHz, CD3CN, 298 K): d 4.3 (s, 2H, CH2), 6.2–8.3 (m, 25H, aromatic H),
11.2 (s, 1H, NH); 13C NMR (67.8 MHz, CD3CN, 298 K): d 52.71 (CH2),
113.98–176.58 (aromatic C), 266.01 (RuNC). 2b : Elemental analysis: Calc.
for 2b (found) (%): C 57.07 (57.24), H 4.08 (4.08), N 9.51 (9.74); 1H NMR
(300 MHz, CD3CN, 298 K): d 3.5 (s, 3H, OCH3), 4.3 (s, 2H, CH2), 5.8–8.3
(m, 24H, aromatic H), 11.2 (s, 1H, NH); 13C NMR (125.76 MHz, CD3CN,
298 K): d 53.25 (OCH3), 55.70 (CH2), 105.90–180.09 (aromatic C), 262.70
(RuNC).
Fig. 1 Perspective drawing of the complex cation 2b with atomic numbering
scheme. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids
are shown at the 50% probability levels. Selected bond lengths (Å) and
angles (°): Ru(1)–N(1) 2.060(6), Ru(1)–N(2) 2.141(5), Ru(1)–N(3)
2.120(5), Ru(1)–N(4) 2.058(6), Ru(1)–C(1) 1.963(7), Ru(1)–C(2) 2.047(6),
C(1)–C(8) 1.514(9), C(8)–C(9) 1.519(10), C(1)–N(5) 1.318(9), C(3)–N(5)
1.426(9); N(1)–Ru(1)–N(2) 77.6(2), N(3)–Ru(1)–N(4) 77.0(2), C(1)–
Ru(1)–C(2) 79.5(3), Ru(1)–C(1)–C(8) 128.7(5), C(8)–C(1)–N(5) 114.3(6),
Ru(1)–C(1)–N(5) 116.9(5).
‡ Crystal data for 2b : {[C35H30ON5Ru]+ClO42}, Mr = 737.18, triclinic,
¯
space group P1 (no. 2), a = 9.398(4), b = 12.843(4), c = 14.994(4) Å, a
= 67.74(3), b = 77.36(3), g = 71.07(3)°, V = 1574(1) Å3, Z = 2, Dc
=
1.555 g cm23, m(Mo-Ka) = 6.35 cm21, F(000) = 752, T = 301 K.
Convergence for 436 variable parameters by least-squares refinement on F
with w = 4 Fo2 / s2(Fo2), where s2(Fo2) = [s2(I) + (0.018Fo2)2] for 3911
reflections with I > 3s(I) was reached at R = 0.049 and wR = 0.066 with
a goodness-of-fit of 2.75. CCDC 182/1023.
Table 1 Photophysical data for complexes 2a and 2b
labs/nm
Complex (e/dm3 mol21 cm21
)
Medium T/K lema/nm t0/ms
1 See, for example: P. H. Dixneuf, D. Touchard, P. Haquette, N. Pirio and
L. Toupet, Organometallics, 1993, 12, 3132; Z. Atherton, C. W.
Faulkner, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. Lewis, N. J. Long
and P. R. Raithby, J. Organomet. Chem., 1996, 462, 265; Y. Sun, N. J.
Taylor and A. J. Carty, J. Organomet. Chem., 1992, 423, C43; G. Jia,
J. C. Gallucci, A. L. Rheingold, B. S. Haggerty and D. W. Meek,
Organometallics, 1991, 10, 3459.
2 See, for example: Y. Degani and T. Willner, J. Chem. Soc., Chem.
Commun., 1985, 648; A. M. Echavarren, J. Lopez, A. Santos, A.
Romero, J. A. Hermoso and A. Vegas, Organometallics, 1991, 10,
2371; J. Montoya, A. Santos, J. Lopez, A. M. Echavarren, J. Ros and A.
Romero, J. Organomet. Chem., 1992, 426, 383; T. Rappert and A.
Yamamoto, Organometallics, 1994, 13, 4984; M. A. Esteruelas, A.
Miguel, F. J. Lahoz, A. M. Lopez, E. Onate and L. A. Oro,
Organometallics, 1994, 13, 1669; A. Pedersen, M. Tilset, K. Folting and
K. G. Caulton, Organometallics, 1995, 14, 875; C. M. Che, S. M. Yang,
M. C. W. Chan, K. K. Cheung and S. M. Peng, Organometallics, 1997,
16, 2819; Y. Zhu, O. Clot, M. O. Wolf and G. P. A. Yap, J. Am. Chem.
Soc., 1998, 120, 1812; A. Klose, E. Solari, C. Floriani, S. Geremia and
L. Randaccio, Angew. Chem., Int. Ed. Engl., 1998, 37, 148.
3 T. J. Meyer, B. P. Sullivan, R. B. Smythe and E. M. Kober, J. Am. Chem.
Soc., 1982, 104, 4701.
2a
250 (37 960), 298
(46 400), 370 (11 630),
484 (6230), 572 (6605)
MeCN
298
808
< 0.1
< 0.1
< 0.1
< 0.1
Solid
298
77
77
775
704
742
813
Solid
Glassb
MeCN
2b
250 (37 680), 298
(52 720), 370 (12 645),
482 (6850), 571 (7090)
298
Solid
Solid
Glassb
298
77
77
767
701
745
a Excitation wavelength at 580 nm. Emission maxima are corrected values.
b EtOH–MeOH (4:1, v/v).
transitions. Excitation of 2a and 2b at l > 350 nm at room
temperature produces red luminescence. It is likely that the
3
origin of the emission is MLCT in nature, arising from states
derived from either a dp(Ru) ? p*(bpy) or a dp(Ru) ?
p*(alkylidene) MLCT transition. The close similarity of the
absorption and emission characteristics of complexes 2a and 2b
suggests that the methoxy substituent on the N-aryl ring of the
aminocarbene unit has relatively little influence on the charge-
transfer transition in these complexes.
The redox properties of the complexes 2a and 2b are
investigated by cyclic voltammetry in acetonitrile using 0.1 mol
dm23 NBu4PF6 as the supporting electrolyte. Reversible to
quasi-reversible reduction couples are observed at 21.66 and
21.89 V vs. SCE for 2a and 21.65 and 21.88 V vs. SCE for 2b;
the potentials of which are relatively independent of the scan
rate with D(Epa 2 Epc) values of ca. 60–90 mV, assigned to the
successive reduction of the bipyridine ligand. The relative
insensitivity of the reduction potentials to the substituent effect
on the aminocarbene unit in 2a and 2b further confirms its
assignment as bpy-centered reduction. A quasi-reversible
oxidation couple is observed at +1.42 V vs. SCE for 2b and an
irreversible oxidation wave is noted at Epa = +1.67 V vs. SCE
for 2a, which are assigned as metal-centered oxidation. The
4 V. W. W. Yam and B. W. K. Chu, unpublished work.
5 C. Bianchini, J. A. Casares, M. Peruzzini, A. Romerosa and F. Zanobini,
J. Am. Chem. Soc., 1996, 118, 4585.
6 M. I. Bruce and A. G. Swincer, Aust. J. Chem., 1980, 33, 1471.
7 M. I. Bruce, in Comprehensive Organometallic Chemistry, Pergamon,
Oxford, vol. 7, pp. 350.
8 D. Schomburg, S. Neumann and R. Schmutzler, J. Chem. Soc., Chem.
Commun., 1979, 848.
9 See, for example: (a) R. J. Doedens and J. A. Moreland, Inorg. Chem.,
1976, 15, 2486; (b) U. A. Gregory, S. D. Ibekwe, B. T. Kilbourn and
D. R. Russell, J. Chem. Soc. A, 1971, 1118; (c) J. D. Edwards, R.
Goddard, S. A. R. Knox, R. J. McKinney, F. G. A. Stone and P.
Woodward, J. Chem. Soc., Chem. Commun., 1975, 828; (d) R. J.
Sundberg, R. F. Bryan, I. F. Taylor and H. Taube, J. Am. Chem. Soc.,
1974, 96, 381; (e) P. B. Hitchcock, M. F. Lappert, P. L. Pye and S.
Thomas, J. Chem. Soc., Dalton Trans., 1979, 1929; (f) M. F. Lappert, P.
B. Hitchcock and P. L. Pye, J. Chem. Soc., Dalton Trans., 1978, 826.
10 F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1972, 16,
487.
Received in Cambridge, UK, 20th July 1998; revised manuscript received
15th Setpember 1998; 8/07281G
2262
Chem. Commun., 1998