Miyabe et al.
FIGURE 1. Regiochemical course of radical addition to ketimines.
FIGURE 2. Aldimine derivatives prepared from benzaldehyde.
carbon center based on the intermolecular radical addition to
the carbon atom of ketimines has remained unresolved (path
a), due to the low reactivity of ketimines and the regiochemical
course of carbon radical addition to ketimines (Figure 1). In
fact, the regioisomeric carbon-nitrogen bond formation based
on intramolecular radical addition to the nitrogen atom of
ketimines has been investigated, although there are no inter-
molecular examples of this process (path b).11
SCHEME 1
For an example of intermolecular radical addition to the
carbon atom of ketimines, Shono’s group reported the elec-
troreductive intermolecular coupling of ketoxime ethers with
ketones.12 More recently, the photoinduced intermolecular
reaction of ketoxime ethers with R-alkoxy carbon radical was
achieved by the group of Alonso.13 However, nothing is known
about the radical addition to ketimines using a conventional
radical initiator such as Et3B or AIBN.14 Therefore, the screening
of reactive ketimino acceptors is the new focus of our efforts.
Our recent studies showed that ketimines having a 2-phenolic
hydroxyl group have excellent reactivities toward nucleophilic
alkyl radicals under mild aqueous-medium reaction conditions
using Et3B.15a We also reported the results of experiments to
test the viability of several ketimines in Et3B-induced intermo-
lecular radical reactions.15b In this paper, we report, in detail,
the Et3B-induced reaction of imines having a 2-phenolic
hydroxyl group in organic solvent. This reaction was applied
to the first reported example of intermolecular enantioselective
radical addition to ketimine.16
(7) (a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett 1998,
780. (b) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. Synlett 1999,
1148. (c) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. J. Org. Chem.
1999, 64, 9189. (d) Bertrand, M. P.; Coantic, S.; Feray, L.; Nouguier, R.;
Perfetti, P. Tetrahedron 2000, 56, 3951. (e) Bertrand, M.; Feray, L.; Gastaldi,
S. C. R. Acad. Sci. Paris, Chim. 2002, 5, 623.
(8) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329. (b)
Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922. (c) Friestad, G.
K.; Shen, Y.; Ruggles, E. L. Angew. Chem., Int. Ed. 2003, 42, 5061. (d)
Friestad, G. K.; Draghici, C.; Soukri, M.; Qin, J. J. Org. Chem. 2005, 70,
6330.
(9) (a) Miyabe, H.; Ushiro, C.; Naito, T. Chem. Commun. 1997, 1789.
(b) Miyabe, H.; Shibata, R.; Ushiro, C.; Naito, T. Tetrahedron Lett. 1998,
39, 631. (c) Miyabe, H.; Ueda, M.; Yoshioka, N.; Naito, T. Synlett 1999,
465. (d) Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. 1999, 1, 569. (e) Miyabe,
H.; Yamakawa, K.; Yoshioka, N.; Naito, T. Tetrahedron 1999, 55, 11209.
(f) Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org.
Chem. 2000, 65, 176. (g) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem.
2000, 65, 5043. (h) Miyabe, H.; Ueda, M.; Naito, T. Chem. Commun. 2000,
2059. (i) Miyabe, H.; Ueda, M.; Nishimura, A.; Naito, T. Org. Lett. 2002,
4, 131. (j) Miyabe, H.; Nishimura, A.; Ueda, M.; Naito, T. Chem. Commun.
2002, 1454. (k) Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata, O.; Naito,
T. Chem. Commun. 2003, 426. (l) Ueda, M.; Miyabe, H.; Nishimura, A.;
Sugino, H.; Naito, T. Tetrahedron: Asymmetry 2003, 14, 2857. (m) Miyabe,
H.; Naito, T. Org. Biomol. Chem. 2004, 2, 1267. (n) Miyabe, H.; Ueda,
M.; Nishimura, A.; Naito, T. Tetrahedron 2004, 60, 4227. (o) Miyabe, H.;
Ueda, M.; Sugino, H.; Naito, T. Org. Biomol. Chem. 2005, 3, 1124. (p)
Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata, O.; Naito, T. J. Org. Chem.
2005, 70, 6653.
(10) For related examples, see: (a) Singh, N.; Anand, R. D.; Trehan, S.
Thetrahedron Lett. 2004, 45, 2911. (b) Risberg, E.; Fischer, A.; Somfai, P.
Chem. Commun. 2004, 2088. (c) Yamada, K.; Yamamoto, Y.; Maekawa,
M.; Tomioka, K. J. Org. Chem. 2004, 69, 1531. (d) Liu, X.; Zhu, S.; Wang,
S. Synthesis 2004, 683. (e) Yamada, K.; Yamamoto, Y.; Tomioka, K. Org.
Lett. 2003, 5, 1797. (f) Ferna´ndez, M.; Alonso, R. Org. Lett. 2003, 5, 2461.
(g) Alves, M. J.; Fortes, G.; Guimara˜es, E.; Lemos, A. Synlett 2003, 1403.
(h) Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga, T.; Tomioka,
K. Org. Lett. 2002, 4, 3509. (i) Masson, G.; Py, S.; Valle´e, Y. Angew.
Chem., Int. Ed. 2002, 41, 1772. (j) Russell, G. A.; Wang, L.; Rajaratnam,
R. J. Org. Chem. 1996, 61, 8988.
(11) For some examples, see: (a) Viswanathan, R.; Prabhakaran, E. N.;
Plotkin, M. A.; Johnston, J. N. J. Am. Chem. Soc. 2003, 125, 163. (b) Orito,
K.; Uchiito, S.; Satoh, Y.; Tatsuzawa, T.; Harada, R.; Tokuda, M. Org.
Lett. 2000, 2, 307. (c) McClure, C. K.; Kiessling, A. J.; Link, J. S.
Tetrahedron 1998, 54, 7121. (d) Tomaszewski, M. J.; Warkentin, J.;
Werstiuk, N. H. Aust. J. Chem. 1995, 48, 291. (e) Bowman, W. R.;
Stephenson, P. T.; Terrett, N. K.; Young, A. R. Tetrahedron Lett. 1994,
35, 6369. (f) Takano, S.; Suzuki, M.; Ogasawara, K. Heterocycles 1994,
37, 149. (g) Tomaszewski, M. J.; Warkentin, J. Tetrahedron Lett. 1992,
2123. (h) Han, O.; Frey, P. A. J. Am. Chem. Soc. 1990, 112, 8982. (i)
Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. Chem. Lett. 1990, 315.
(12) Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991, 32, 525.
Results and Discussion
Reactivity of N-Aromatic Aldimine Having a Phenolic
Hydroxyl Group. To compare the effect of substituent of
nitrogen atom of CdN bond, our experiments began with the
investigation of intermolecular radical addition to several
aldimines (Figure 2). In our previous studies, we reported that
the Et3B-induced radical addition to oxime ether 1 and hydra-
zone 2 did not proceed in the absence of Lewis acid and the
activation of CdN bond with BF3‚OEt2 was essential to achieve
the intermolecular radical addition to 1.9b,d,e More recently, we
reported that electron-deficient N-sulfonyl imine 3 exhibits an
excellent reactivity and the radical addition to 3 proceeded
smoothly even in the absence of Lewis acid.9h
The substrates of choice were different types of aldimines
4-7 prepared from benzaldehyde to identify the reactivity of
aldimine 7 having a phenolic hydroxyl group. The reactions
were run in undegassed CH2Cl2 at 20 °C for 5 min by using
Et3B as an ethyl radical source (Scheme 1). In contrast to
N-sulfonyl imine 3,9h the reaction of similar electron-deficient
imines 4 and 5 gave not only the inferior yields of products 8a
(13) Torrente, S.; Alonso, R. Org. Lett. 2001, 3, 1985.
(14) Utimoto and Oshima were the first to apply the reaction of Et3B
with oxygen to initiate radical reactions. See: (a) Miura, K.; Ichinose, Y.;
Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn.
1989, 62, 143. (b) Kabalka, G. W.; Brown, H. C.; Suzuki, A.; Honma, S.;
Arase, A.; Itoh, M. J. Am. Chem. Soc. 1970, 92, 710. For reviews of radical
reaction with organoborane, see: (c) Yorimitsu, H.; Shinokubo, H.; Oshima,
K. Synlett 2002, 674. (d) Olliver, C.; Renaud, P. Chem. ReV. 2001, 101,
3415.
(15) (a) Miyabe, H.; Yamaoka, Y.; Takemoto, Y. Synlett 2004, 2597.
(b) Miyabe, H.; Yamaoka, Y.; Takemoto, Y. J. Org. Chem. 2005, 70, 3324.
(16) For the intermolecular enantioselective radical addition to aldimines,
see refs 8b,c and 9f.
2100 J. Org. Chem., Vol. 71, No. 5, 2006