Organic Letters
Letter
Scheme 5. Bromocyclization of Geranyl Derivatives
REFERENCES
■
(1) (a) Gribble, G. W. J. Nat. Prod. 1992, 55, 1353. (b) Wang, B.-G.;
Gloer, J. B.; Ji, N.-Y.; Zhao, J.-C. Chem. Rev. 2013, 113, 3632. (c) Chung,
W.-J.; Vanderwal, C. D. Angew. Chem., Int. Ed. 2016, 55, 4396.
(2) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.
(3) (a) Butler, A.; Carter-Franklin, J. N. Nat. Prod. Rep. 2004, 21, 180.
(b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.;
Walsh, C. T. Chem. Rev. 2006, 106, 3364. (c) Agarwal, V.; Miles, Z. D.;
Winter, J. M.; Eustaquio, A. S.; El Gamal, A. A.; Moore, B. S. Chem. Rev.
2017, 117, 5619.
(4) (a) Kubanek, J.; Prusak, A. C.; Snell, T. W.; Giese, R. A.; Hardcastle,
K. I.; Fairchild, C. R.; Aalbersberg, W.; Raventos-Suarez, C.; Hay, M. E.
Org. Lett. 2005, 7, 5261. (b) Lin, H.; Pochapsky, S. S.; Krauss, I. J. Org.
Lett. 2011, 13, 1222.
(5) (a) Hogberg, H.-E.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1
1976, 1696. (b) McConnell, O. J.; Hughes, P. A.; Targett, N. M.
Phytochemistry 1982, 21, 2139.
(6) Wall, M. E.; Wani, M. C.; Manikumar, G.; Taylor, H.; Hughes, T. J.;
Gaetano, K.; Gerwick, W. H.; McPhail, A. T.; McPhail, D. R. J. Nat. Prod.
1989, 52, 1092.
(7) (a) Snyder, S. A.; Treitler, D. S. Angew. Chem., Int. Ed. 2009, 48,
7899. (b) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem. Soc.
2010, 132, 14303. (c) Snyder, S. A.; Treitler, D. S.; Schall, A. Tetrahedron
2010, 66, 4796. (d) Snyder, S. A.; Treitler, D. S.; Brucks, A. P.
Aldrichimica Acta 2011, 44, 27. (e) Snyder, S. A.; Brucks, A. P.; Treitler,
D. S.; Moga, I. J. Am. Chem. Soc. 2012, 134, 17714. (f) Shen, M.;
Kretschmer, M.; Brill, Z. G.; Snyder, S. A. Org. Lett. 2016, 18, 5018.
(8) (a) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
(b) Sawamura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem. Sci.
2013, 4, 4181. (c) Sawamura, Y.; Nakatsuji, H.; Akakura, M.; Sakakura,
A.; Ishihara, K. Chirality 2014, 26, 356. (d) Sakakura, A.; Ishihara, K.
Chem. Rec. 2015, 15, 728. (e) Samanta, R. C.; Yamamoto, H. Chem. - Eur.
J. 2015, 21, 11976. (f) Recsei, C.; McErlean, C. S. P. Aust. J. Chem. 2015,
68, 555. (g) Sawamura, Y.; Ogura, Y.; Nakatsuji, H.; Sakakura, A.;
Ishihara, K. Chem. Commun. 2016, 52, 6068. (h) Samanta, R. C.;
Yamamoto, H. J. Am. Chem. Soc. 2017, 139, 1460.
(9) (a) Nocquet-Thibault, S.; Retailleau, P.; Cariou, K.; Dodd, R. H.
Org. Lett. 2013, 15, 1842. (b) Nocquet-Thibault, S.; Minard, C.;
Retailleau, P.; Cariou, K.; Dodd, R. H. Tetrahedron 2014, 70, 6769.
(c) Nocquet-Thibault, S.; Rayar, A.; Retailleau, P.; Cariou, K.; Dodd, R.
H. Chem. - Eur. J. 2015, 21, 14205. (d) Daniel, M.; Blanchard, F.;
Nocquet-Thibault, S.; Cariou, K.; Dodd, R. H. J. Org. Chem. 2015, 80,
10624. (e) Beltran, R.; Nocquet-Thibault, S.; Blanchard, F.; Dodd, R.
H.; Cariou, K. Org. Biomol. Chem. 2016, 14, 8448.
initial ligand exchange between the phenol and the ester on the
hypervalent iodine center, followed by oxy-halogenation of the
proximal double bond. This was further exemplified by the
reaction of guanidine 4f which smoothly led to 12 in 75% yield.
Indeed, it is the only substrate that we studied for which the
reaction mainly occurred on the internal double bond.
Overall we have shown that by using a combination of a
(bisacyloxy)iodobenzene and a bromide source, three different
electrophilic brominations of terpenoids with different outcomes
could be triggered. Simple adjustments in the nature of the
reagents (all commercially available) and the procedure
(temperature, rate, and order of addition) could steer the
reactivity toward dibromination, oxy-bromination, or bromocyc-
lization, including cascade processes. This strategy grants access
to various motifs that can be found in several families of natural
products. Studies in this direction as well as the implementation
of this methodology for other halides are currently being
pursued.
ASSOCIATED CONTENT
* Supporting Information
■
S
(10) (a) Amey, R. L.; Martin, J. C. J. Org. Chem. 1979, 44, 1779.
(b) Braddock, D. C.; Cansell, G.; Hermitage, S. A.; White, A. J. P. Chem.
Commun. 2006, 1442. (c) Fabry, D. C.; Stodulski, M.; Hoerner, S.;
Gulder, T. Chem. - Eur. J. 2012, 18, 10834. (d) Stodulski, M.;
Goetzinger, A.; Kohlhepp, S. V.; Gulder, T. Chem. Commun. 2014, 50,
3435. (e) Ulmer, A.; Stodulski, M.; Kohlhepp, S. V.; Patzelt, C.; Pothig,
A.; Bettray, W.; Gulder, T. Chem. - Eur. J. 2015, 21, 1444. (f) Patzelt, C.;
The Supporting Information is available free of charge on the
Comprehensive optimization studies, experimental pro-
cedures, analytical data, and copies of NMR spectra for all
Crystallographic data for 5d (CIF)
Crystallographic data for 8b (CIF)
Pothig, A.; Gulder, T. Org. Lett. 2016, 18, 3466. (g) Arnold, A. M.;
̈
Ulmer, A.; Gulder, T. Chem. - Eur. J. 2016, 22, 8728.
Crystallographic data for 13 (CIF)
(11) For general reviews, see: (a) Brown, M.; Farid, U.; Wirth, T.
Synlett 2013, 24, 424. (b) Singh, F. V.; Wirth, T. Chem. - Asian J. 2014, 9,
950. (c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(13) Recyclization protocols only led to a very complex mixture of
products.
(14) (a) Pettit, G. R.; Herald, C. L.; Allen, M. S.; Von Dreele, R. B.;
Vanell, L. D.; Kao, J. P. Y.; Blake, W. J. Am. Chem. Soc. 1977, 99, 262.
(b) Von Dreele, R. B.; Kao, J. P. Y. Acta Crystallogr., Sect. B: Struct.
Crystallogr. Cryst. Chem. 1980, 36, 2695. (c) Capon, R.; Ghisalberti, E.
L.; Jefferies, P. R.; Skelton, B. W.; White, A. H. Tetrahedron 1981, 37,
1613. (d) Kuniyoshi, M.; Marma, M. S.; Higa, T.; Bernardinelli, G.;
Jefford, C. W. J. Nat. Prod. 2001, 64, 696. (e) Paul, V. J.; Fenical, W.
Tetrahedron Lett. 1980, 21, 2787.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors thank CNRS and ICSN, for financial support. T. D.
G. thanks ICSN for a PhD fellowship.
■
D
Org. Lett. XXXX, XXX, XXX−XXX