A R T I C L E S
Fukaminato et al.
nique is successfully applied to characterize the properties of
individual molecules in various micro-environments,22-31 the
direct observation of the photochromic reaction at the single-
molecule level has not yet been accomplished and single-
molecule photocontrol is limited.32-35 For the observation, it
is indispensable to prepare a photochromic molecule, which
changes the fluorescence intensity along with the photochromic
reaction and has high photostability. Green fluorescence protein
is the only example that exhibits the optically induced switching
of fluorescence at room temperature.19 There are no artificial
fluorescent photochromic molecules that can be applied to the
single-molecule experiment. It is required to newly design and
synthesize robust fluorescent photochromic or photoswitching
molecules. As the photoswitching unit, diarylethene derivatives
with heterocyclic aryl groups are the most promising candidates
because of their fatigue resistant photochromic performance.36
The derivatives can repeat photoinduced coloration/decoloration
cycles more than 104 times, and the photocolored isomers are
stable for more than a thousand years at 30 °C.37 When an
appropriate fluorescent unit is connected to the chromophores,
the photochromic reaction can be detected by the fluorescence
intensity change even at the single-molecule level.38
In this study, a new robust fluorescent diarylethene derivative
with one methoxy group at the reactive carbon has been
synthesized in addition to the previous derivative38a with two
methoxy groups, and their photoswitching performance was
studied in detail in solution (an ensemble system) as well as on
polymer films at the single-molecule level. At the single-
molecule level, digital switching between two distinct states was
observed, and the different behavior of the two derivatives
indicated that the switching of fluorescence is unambiguously
based on the photochromic reaction.
Results and Discussion
Molecular Design of Fluorescent Photochromic Molecules.
The molecules that we synthesized are shown in Scheme 1.
Photochromic diarylethene and fluorescent bis(phenylethynyl)-
anthracene units are covalently linked through a rigid adamantyl
spacer group. Methoxy substituents are introduced at the reactive
carbons to decrease the cycloreversion quantum yield.39 Two
derivatives having one or two methoxy groups were prepared.
Their photochromic performances are similar to each other
except the cycloreversion quantum yield. The effectiveness of
the methoxy substituents for the observation of the single-
molecule photoswitching will be discussed in detail in the last
part. The bis(phenylethynyl)anthracene unit with methoxy
substituents was employed as the fluorescent unit, because of
its high fluorescence quantum yield, appropriate fluorescence
spectral region, and fairly good fatigue resistant property.
1a converts to 1b upon irradiation with UV (300-350 nm)
light, and 1b returns to 1a upon irradiation with visible (>450
nm) light.39,40 The relative energy levels of the component
chromophores are also shown in Scheme 1. The bis(phenyl-
ethynyl)anthracene unit has characteristic absorption and fluo-
rescent bands at 488 and 503 nm, respectively.41 The fluores-
cence spectrum well overlaps the absorption spectrum of the
closed-ring form of the diarylethene unit. Therefore, the
fluorescence is efficiently quenched when the diarylethene unit
converts from the open- to the closed-ring forms. On the other
hand, when the diarylethene is in the open-ring form, its energy
level is higher than the level of the bis(phenylethynyl)anthracene
unit and the fluorescence quenching does not take place. The
detailed quantitative data are shown in the following section.
Fluorescence Change in Ensemble Solution upon Pho-
toirradiation. Figure 1a shows the absorption spectral change
of 1a in a toluene solution (an ensemble system) upon irradiation
with 313 nm light. A visible absorption band at around 630 nm
gradually increased and reached a photostationary state. The
absorption band is due to the closed-ring isomer 1b, and the
gradual increase is due to the photocyclization of the diaryl-
ethene unit.39,40 Figure 1b shows the fluorescence spectral
change along with the photocyclization. The initial fluorescence
quantum yield of 1a was 73%. The fluorescence intensity
gradually decreased in proportion to the conversion from 1a to
(14) Deschenes, A.; Vanden Bout, D. A. Science 2001, 292, 255-258.
(15) Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877-1882.
(16) Veerman, J. A.; Garcia-Parajo, M. F.; Kuipers, L.; van Hulst, N. F. Phys.
ReV. Lett. 1999, 83, 2155-2158.
(17) Hofkens, J.; Maus, M.; Gensch, T.; Vosch, T.; Cotlet, M.; Ko¨hn, F.;
Herrmann, A.; Mu¨llen, K.; De Schryver, F. C. J. Am. Chem. Soc. 2000,
122, 9278-9288.
(18) (a) Vanden Bout, D. A.; Yip, W. T.; Hu, D. H.; Fu, D. K.; Swager, T. M.;
Barbara, P. F. Science 1997, 277, 1074-1077. (b) Yu, J.; Hu, D.; Barbara,
P. F. Science 2000, 289, 1327-1330.
(19) Dickson, R. M.; Cubitt, A. B.; Tsien, R. Y.; Moerner, W. E. Nature 1997,
388, 355-358.
(20) Kulzer, F.; Kummer, S.; Matzke, R.; Bra¨uchle, C.; Basche´, T. Nature 1997,
387, 688-691.
(21) Funatsu, T.; Harada, Y.; Tokunaga, M.; Saito, K.; Yanagida, T. Nature
1995, 374, 555-559.
(22) (a) Deschenes, L. A.; Vanden Bout, D. A. J. Phys. Chem. B 2002, 106,
11438-11445. (b) Deschenes, L. A.; Vanden Bout, D. A. J. Phys. Chem.
B 2001, 105, 11978-11985.
(23) Viteri, C. R.; Gilliland, J. W.; Yip, W. T. J. Am. Chem. Soc. 2003, 125,
1980-1987.
(24) Mei, E.; Vinogradov, S.; Hochstrasser, R. M. J. Am. Chem. Soc. 2003,
125, 13198-13204.
(25) Weston, K. D.; Carson, P. J.; Metiu, H.; Buratto, S. K. J. Chem. Phys.
1998, 109, 7474-7485.
(26) Brasselet, S.; Moerner, W. E. Single Mol. 2000, 1, 17-23.
(27) (a) Wang, H.; Bardo, A. M.; Collinson, M. M.; Higgins, D. A. J. Phys.
Chem. B 1998, 102, 7231-7237. (b) Mei, E.; Bardo, A. M.; Collinson, M.
M.; Higgins, D. A. J. Phys. Chem. B 2000, 104, 9973-9980. (c) Hou, Y.;
Bardo, A. M.; Martinez, C.; Higgins, D. A. J. Phys. Chem. B 2000, 104,
212-219. (d) Hou, Y.; Higgins, D. A. J. Phys. Chem. B 2002, 106, 10306-
10315.
(28) Osborne, M. A.; Barnes, C. L.; Balasubramanian, S.; Klenerman, D. J.
Phys. Chem. B 2001, 105, 3120-3126.
(29) Valle´e, R. A. L.; Tomczak, N.; Kuipers, L.; Vancso, G. J.; van Hulst, N.
F. Phys. ReV. Lett. 2003, 91, 038301.
(30) (a) Scmidt, Th.; Schu¨tz, G. J.; Baumgartner, W.; Gruber, H. J.; Schindler,
H. J. Phys. Chem. 1995, 99, 17662-17668. (b) Talley, C. E.; Dunn, R. C.
J. Phys. Chem. B 1999, 103, 10214-10220.
(31) Zang, L.; Liu, R.; Holman, M. W.; Nguyen, K. T.; Adams, D. M. J. Am.
Chem. Soc. 2002, 124, 10640-10641.
(32) English, D. S.; Harbron, E. J.; Barbara, P. F. J. Phys. Chem. A 2000, 104,
9057-9061.
(33) Kulzer, F.; Kummer, S.; Matzke, R.; Bra¨uchle, C.; Basche´, T. Nature 1997,
387, 688-691.
(34) Jung, G.; Wiehler, J.; Steipe, B.; Bra¨uchle, C.; Zumbusch, A. ChemPhys-
Chem 2001, 2, 392-396.
(38) (a) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002,
420, 759-760. (b) Jares-Erijman, E. A.; Jovin, T. M. Nat. Biotechnol.
2003, 21, 1387-1395. (c) Giordano, L.; Jovin, T. M.; Irie, M.; Jares-
Erijman, E. A. J. Am. Chem. Soc. 2002, 124, 7481-7489.
(39) (a) Shibata, K.; Kobatake, S.; Irie, M. Chem. Lett. 2001, 618-619. (b)
Morimitsu, K.; Shibata, K.; Kobatake, S.; Irie, M. J. Org. Chem. 2002, 67,
4574-4578.
(40) Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. J. Org. Chem. 1995, 60,
8305-8309.
(41) (a) Hanhela, P. J.; Paul, D. B. Aust. J. Chem. 1981, 34, 1701-1717. (b)
Li, B.; Miao, W.; Cheng, L. Dyes Pigm. 1999, 43, 161-165.
(35) Dulic´, D.; van der Molen, S. J.; Kudernac, T.; Jonkman, H. T.; de Jong, J.
J. D.; Bowden, T. N.; van Esch, J.; Feringa, B. L.; van Wees, B. J. Phys.
ReV. Lett. 2003, 91, 207402.
(36) (a) Irie, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1998, 71, 985-996. (b) Irie,
M. Chem. ReV. 2000, 100, 1685-1716. (c) Tian, H.; Yang, S. Chem. Soc.
ReV. 2004, 33, 85-97.
(37) (a) Hanazawa, M.; Sumiya, R.; Horikawa, Y.; Irie, M. J. Chem. Soc., Chem.
Commun. 1992, 206-207. (b) Irie, M.; Lifka, T.; Kobatake, S.; Kato, N.
J. Am. Chem. Soc. 2000, 122, 4871-4876. (c) Takami, S.; Kobatake, S.;
Kawai, T.; Irie, M. Chem. Lett. 2003, 32, 892-893.
9
14844 J. AM. CHEM. SOC. VOL. 126, NO. 45, 2004