Directly meso−meso Linked Porphyrin Rings
A R T I C L E S
Chart 1. Structures of CZ4, CZ6, and CZ8 (Ar ) 3,5-Di-tert-butylphenyl)
arrangement and the large electronic coupling between neigh-
boring pigments are required for efficient EEH.
whose electronic π-network consists of only porphyrins and thus
may be interesting also in view of belt-shape aromatic molecules
that consist of only aromatic segments.14 In addition, these
molecules will allow direct comparison of molecular morphol-
ogy effects, linear versus cyclic, upon the overall photophysical
properties of meso-meso linked porphyrin arrays. In this paper,
we report the syntheses and characterizations of porphyrin rings
such as CZ4, CZ6, and CZ8 (Chart 1) and their photophysical
properties.
In the past decade, we have explored various directly meso-
meso linked porphyrin arrays on the basis of silver(I)-promoted
coupling of a 5,15-diaryl-substituted zinc porphyrin.10,11 Some
of these porphyrin arrays are promising as optical molecular
wire by transmitting excitation energy over a long distance.
Actually, the efficient excitation energy transfer has been
achieved over a long distance through meso-meso linked zinc-
(II) porphyrin arrays.11 This function relies on their strongly
coupled but not fully π-conjugated electronic character.12
Recently, we reported a dodecameric porphyrin wheel, in which
meso-meso linked diporphyrin subunits are bridged by a 1,3-
phenylene spacer that is used to produce curvature of array.13
The presence of such a spacer weakens the electronic coupling
and causes two different EEH steps with rates of 0.24 ps-1 and
3.6 ps-1, which correspond to EEH within a meso-meso linked
diporphyrin and between neighboring meso-meso linked di-
porphyrins.
Experimental Section
General Information. The syntheses of CZ4, CZ6, and CZ8 as
well as the intermediates leading to them are detailed in the Supporting
Information. All solvents were spectrophotometric grade. All the
calculations were carried out using the Gaussian 03 program. All
structures were optimized with Becke’s three-parameter hybrid ex-
change functional and the Lee-Yang-Parr correlation functional
(B3LYP), employing the 6-31G* basis set for all atoms.
STM Images. Clean flat Cu(100) surfaces were obtained by Ar+
sputtering and annealing (550°C) cycles for a substrate. The porphyrin
ring molecules dissolved into CH2Cl2 were deposited by spraying ca.
0.5 µL of the solution onto the substrate in a vacuum (10-6 mbar) using
a pulse injection method,15 which is suited for deposition of large fragile
molecules with escaping decomposition often encountered in sample
deposition from the gas phase. In situ STM measurements were
performed at room temperature in an ultrahigh vacuum (<10-10 mbar)
with a home-build STM by using an electrochemical etched Pt/Ir tip.
STM image was obtained in constant height mode.
Cyclic porphyrin architectures, in which the constituent
porphyrins are all directly linked at meso-meso positions, are
a more attractive target in view of synthetic challenge, higher
molecular symmetry, and large and regular electronic interaction
between neighboring porphyrins that will lead to efficient EEH.
Such molecules can be regarded as a genuine porphyrin ring
(7) (a) Takase, M.; Ismael, R.; Murakami, R.; Ikeda, M.; Kim, D.; Shinmori,
H.; Furuta, H.; Osuka, A. Tetrahedron Lett. 2002, 43, 5157. (b) Cho, H.
S.; Rhee, H.; Song, J. K.; Min, C.-K.; Takase, M.; Aratani, N.; Cho, S.;
Osuka, A.; Joo, T.; Kim, D. J. Am. Chem. Soc. 2003, 125, 5849.
(8) (a) Choi, M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int.
Ed. 2004, 43, 150. (b) Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki, I.
Chem.sEur. J. 2002, 8, 2668. (c) Choi, M.-S.; Aida, T.; Luo, H.; Araki,
Y.; Ito, O. Angew. Chem., Int. Ed. 2003, 42, 4060. (d) Yeow, E. K. L.;
Ghiggino, K. P.; Reek, J. N. H.; Crossley, M. J.; Bosman, A. W.; Schenning,
A. P. H. J.; Meijer, E. W. J. Phys. Chem. B 2000, 104, 2596.
Steady-State Spectra. The samples were prepared in micromolar
concentrations in THF (spectroscopic grade). Absorption spectra were
obtained with a Shimadzu model 1601 UV spectrometer, and steady-
state fluorescence was measured by a Hitachi model F-4500 fluores-
cence spectrophotometer at room temperature.
(9) Noncovalent porphyrin assemblies were reported. (a) Drain, C. M. Nifiatis,
F.; Vasenko, A.; Batteas, J. D. Angew. Chem., Int. Ed. 1998, 37, 2344. (b)
Rubtsov, I. V.; Kobuke, Y.; Miyaji, H.; Yoshihara, K. Chem. Phys. Lett.
1999, 308, 323. (c) Takahashi, R.; Kobuke, Y. J. Am. Chem. Soc. 2003,
125, 2372. (d) Ikeda, C.; Satake, A.; Kobuke, Y. Org. Lett. 2003, 5, 4935.
(e) Kuramochi, Y.; Satake, A.; Kobuke, Y. J. Am. Chem. Soc. 2004, 126,
8668, and refs 3c and 6d.
(10) (a) Osuka, A.; Shimidzu, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 135.
(b) Aratani, N.; Osuka, A.; Kim, Y. H.; Jeong, D. H.; Kim, D. Angew.
Chem., Int. Ed. 2000, 39, 1458.
(11) (a) Nakano, A.; Osuka, A.; Yamazaki, I.; Yamazaki, T.; Nishimura, Y.
Angew. Chem., Int. Ed. 1998, 37, 3023. (b) Nakano, A.; Yamazaki, T.;
Nishimura, Y.; Yamazaki, I.; Osuka, A. Chem.sEur. J. 2000, 6, 3254. (c)
Aratani, N.; Cho, H. S.; Ahn, T. K.; Cho, S.; Kim, D.; Sumi, H.; Osuka,
A. J. Am. Chem. Soc. 2003, 125, 9668.
(14) (a) Ashton, P. R.; Isaacs, N. S.; Kohnke, F. H.; Slawin, A. M. Z.; Spencer,
C. M.; Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1988,
27, 966. (b) Diederich, F. Nature 1994, 369, 199. (c) Kawase, T.; Darabi,
H. R.; Oda, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2664. (d) Hensel,
V.; Schlu¨ter, A. D. Chem.sEur. J. 1999, 5, 421. (e) Kro¨mer, J.; Rios-
Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin, M.; Debaerdemaeker,
T.; Mena-Osteritz, E.; Ba¨uerle, R. Angew. Chem., Int. Ed. 2000, 39, 3481.
(f) Ohkita, M.; Ando, K.; Tsuji, T. Chem. Commun. 2001, 2570. (g)
Fuhrmann, G.; Debaerdemaeker, T.; Ba¨uerle, P. Chem. Commun. 2003,
948. (h) Seidel, D.; Lynch, V.; Sessler, J. L. Angew. Chem., Int. Ed. 2002,
41, 1422. (i) Ko¨hler, T.; Seidel, D.; Lynch, V.; Arp. F. O.; Ou, Z.; Kadish,
K. M.; Sessler, J. L. J. Am. Chem. Soc. 2003, 125, 6872. (j) Neudorff, W.
D.; Lentz, D.; Anibarro, M.; Schlu¨ter, A. D. Chem.sEur. J. 2003, 9, 2745.
(k) Kawase, T.; Tanaka, K.; Fujiwara, N.; Darabi, R. H.; Oda, M. Angew.
Chem., Int. Ed. 2003, 42, 1624. (l) Matsuo, Y.; Tahara, K.; Sawamura,
M.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 8725.
(12) (a) Kim, D.; Osuka, A. J. Phys. Chem. A 2003, 107, 8791. (b) Kim, Y. H.;
Jeong, D. H.; Kim, D.; Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.;
Osuka, A. J. Am. Chem. Soc. 2001, 123, 76.
(13) Peng, X.; Aratani, N.; Takagi, A.; Matsumoto, T.; Kawai, T.; Hwang, I.-
W.; Ahn, T. K.; Kim, D.; Osuka, A. J. Am. Chem. Soc. 2004, 126, 4468.
(15) (a) Tanaka, H.; Nakagawa, T.; Kawai, T. Surf. Sci. 1996, 364, L575. (b)
Takagi, A.; Yanagawa, Y.; Tsuda, A.; Aratani, N.; Matsumoto, T.; Osuka,
A.; Kawai, T. Chem. Commun. 2003, 2986.
9
J. AM. CHEM. SOC. VOL. 127, NO. 1, 2005 237