V. K. Rajput, B. Mukhopadhyay / Tetrahedron Letters 47 (2006) 5939–5941
5941
10. Singh, P. P.; Gharia, M. M.; Dasgupta, F.; Srivastava, H.
C. Tetrahedron Lett. 1977, 439–440.
11. Pfaff, P. K.; Paust, J.; Hartmann, H. (BASF, A: -G.) Ger.
Offen. DE 3, 505, 150 (cl. C07H9/04), 21 August 1986,
Appl. 15 February 1985 (CA 106:18984r).
The strategy is equally compatible to large-scale
synthesis.
Acknowledgements
12. Lal, B.; Gidwani, R. M.; Rupp, R. H. Synthesis 1989, 711–
713.
V.K.R is thankful to CSIR, New Delhi, for providing a
fellowship. Instrumentation facilities from SAIF, CDRI
are gratefully acknowledged.
13. Rauter, A. P.; Ramoˆa-Ribeiro, F.; Fernandes, A. C.;
Figueiredo, J. A. Tetrahedron 1995, 51, 6529–6540.
14. For instance see: (a) Mukhopadhyay, B.; Maurer, S. V.;
Rudolph, N.; van Well, R.; Russell, D. A.; Field, R. A. J.
Org. Chem. 2005, 70, 9059–9062; (b) Mukhopadhyay, B.;
Kartha, K. P. R.; Russell, D. A.; Field, R. A. J. Org.
Chem. 2004, 69, 7758–7760; (c) Mukhopadhyay, B.;
Russell, D. A.; Field, R. A. Carbohydr. Res. 2005, 340,
1075–1080; (d) Mukhopadhyay, B.; Collet, B.; Field, R. A.
Tetrahedron Lett. 2005, 46, 5923–5925; (e) Chakraborti,
A. K.; Gulhane, R. Chem. Commun. 2003, 1896–1897; (f)
Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004,
69, 6137–6140; (g) Misra, A. K.; Tiwari, P.; Agnihotri, G.
Synthesis 2005, 2, 260–266; (h) Iranpoor, N.; Firouzabadi,
H.; Jamalian, A.; Kazemi, F. Tetrahedron 2005, 61, 5699–
5704; (i) Iranpoor, N.; Firouzabadi, H.; Jamalian, A.
Synlett 2005, 1447–1449.
Supplementary data
Copies of 1H and 13C NMR spectra of compounds 8, 9,
10, 11, 12, 13, and 14 are available. Supplementary data
associated with this article can be found, in the online
References and notes
1. (a) Mills, J. A. Adv. Carbohydr. Chem. 1955, 10, 1–53; (b)
De Belder, A. N. Adv. Carbohydr. Chem. 1965, 20, 219–
302; (c) De Belder, A. N. Adv. Carbohydr. Chem. 1977, 34,
179–241.
2. Goi, A.; Bruzzese, T.; Notarianni, A. F.; Riva, M.;
Ronchini, A. Arzneim.-Forsch./Drug Res. 1979, 29, 986–
990.
15. For instance see: (a) Zolfigol, M. A.; Bamoniri, A. Synlett
2002, 1621–1623; (b) Zolfigol, M. A. Tetrahedron 2001, 57,
9509; (c) Zolfigol, M. A.; Shirini, F.; Ghorbani Chogha-
marani, A.; Mohammadpoor-Baltork, I. Green Chem.
2002, 4, 562; (d) Shirini, F.; Zolfigol, M. A.; Mohammadi,
K. Bull. Korean Chem. Soc. 2004, 25, 325–327.
16. Mukhopadhyay, B. Tetrahedron Lett. 2006, 47, 4337.
17. Preparation of H2SO4–silica: To a slurry of silica gel (10 g,
200–400 mesh) in dry diethyl ether (50 mL) was added
commercially available concd H2SO4 (1 mL) and the
slurry shaken for 5 min. The solvent was evaporated
under reduced pressure resulting in free flowing H2SO4–
silica which was dried at 110 °C for 3 h and used for the
reactions.
3. Jenkins, R. O. In Biotechnological Innovations in Chemical
Synthesis; Van Dam Mieras, R. C., Currell, B., Eds.;
Elsevier, 1997.
4. Behling, J.; Farid, P.; Medich, J. R.; Scaros, M. G.;
Prunier, M. Synth. Commun. 1991, 21, 1383–1386.
5. (a) Stevens, J. D. Chem. Commun. 1969, 1140–1141; (b)
Hughes, N. A.; Speakman, P. R. H. Carbohydr. Res. 1965,
1, 171–175.
18. General procedure: To a slurry of the commercially
available free sugar (1 mmol) in dry acetone (5 mL) was
added H2SO4–silica (20 mg) and the mixture was refluxed
for the required time (Table 1). Then the mixture was
filtered through a pad of CeliteÒ, washed with CH2Cl2
(5 mL) and evaporated to dryness. The resulting product
was characterized by NMR spectroscopy and mass
spectrometry.
6. Schmidt, O. Th. Methods Carbohydr. Chem. 1963, 2, 318–
320.
7. (a) Nair, P. R. M.; Shah, P. M.; Sreenivasan, B. Starch
1981, 33, 384–387; (b) Nikiforov, V. A.; Zarutsski, V. V.;
´
Chapanov, I. D.; Vasileva, I. B.; Dolgushina, N. N. Khim.
-Farm. Zh. 1982, 16, 1102–1103.
8. (a) Morgenlie, S. Acta Chem. Scand. 1973, 27, 3609–3610;
(b) Morgenlie, S. Acta Chem. Scand. Ser. B 1975, 29, 367–
372.
19. Gelas, J. Carbohydr. Res. 1978, 67, 371–375.
20. Haines, A. H. Carbohydr. Res. 1965, 1, 214–217.
9. Kartha, K. P. R. Tetrahedron Lett. 1986, 27, 3415–3416.