2754
A. Münch et al.
LETTER
(12) Notz, W.; Tanaka, F.; Watanabe, S.-i.; Chowdari, N. S.;
PMP
a, b
Boc
N
N
Turner, J. M.; Thayumanavan, R.; Barbas, C. F. III J. Org.
Chem. 2003, 68, 9624.
(13) (a) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.;
Shoji, M.; Sakai, K. Angew. Chem. Int. Ed. 2003, 42, 3677.
(b) Cordova, A. Chem.–Eur. J. 2004, 10, 1987.
(14) Mann, S.; Carillon, S.; Breyne, O.; Marquet, A. Chem.–Eur.
J. 2002, 2, 439.
22c
24
Scheme 5 Reagents and conditions: a) CAN, MeCN–H2O;
b) Boc2O, PhMe, 25% aq NaOH, 72%.
(15) To a cooled (–40 °C) solution of (L)-proline (17.3 mg, 0.15
mmol) and p-anisidine (61.6 mg, 0.5 mmol) in MeCN (5
mL) was added 4-OTBS-butanal (809 mg, 4 mmol). The
reaction mixture was stirred for 4 h at this temperature and
then put into a freezer (–30 °C) overnight. The mixture was
diluted with Et2O (2 mL) and allowed to reach 0 °C. After
the addition of NaBH4 (500 mg), the reaction was stirred for
15 min at this temperature and allowed to reach r.t. The
mixture was poured into half sat. aq NH4Cl (50 mL). After
30 min, the aqueous layer was extracted with Et2O (3 × 50
mL) and the combined organic layers are dried with Na2SO4.
Removal of the solvent on a rotatory evaporator afforded the
crude amino alcohol as a colorless oil. The main impurity, 4-
OTBS-butanol, was removed by distillation in a Kugelrohr.
The residue was purified by flash chromatography (Et2O–
pentane 1:1) on silica gel to afford 10a (218 mg, 0.426
mmol, 85%, 98% ee) as a colorless oil. Rf = 0.42 (Et2O–
pentane 1:1); HPLC [Chiracel OD (4.6 × 250 mm] n-
heptane–i-PrOH 95:5, 1.0 mL/min, l = 254 nm): major
isomer: tR = 13.3 min; minor isomer: tR = 5.9 min. 1H NMR
(300 MHz, CDCl3): d = 6.78 (d, J = 8.9 Hz, 2 H), 6.62 (d,
J = 8.9 Hz, 2 H), 3.80–3.55 (m, 9 H), 3.41 (m, 1 H), 2.01 (m,
1 H), 1.70–1.48 (m, 6 H), 0.91 (s, 9 H) 0.89 (s, 9 H), 0.08 (s,
6 H), 0.03 (s, 6 H). 13C NMR (75 MHz, CDCl3): d = 152.4,
141.7, 115.5 (2 C), 114.9 (2 C), 64.4, 62.7, 61.7, 58.0, 55.7,
40.1, 30.5, 29.8, 27.7, 25.9 (6 C), 18.2 (2 C), –5.5 (2 C), –5.4
(2 C). IR (CHCl3): 3378 (m), 2932 (s), 2891 (s), 2858 (s),
1513 (s), 1468 (m), 1251 (s), 1098 (s), 1043 (m), 836 (s), 776
(s) cm–1. MS (EI): m/z (%) = 511 (32) [M+], 308 (100), 176
(74). HRMS (EI): m/z calcd for C27H53NO4Si2 [M+]:
511.3515. Found: 511.3513. Anal. Calcd for C27H53NO4Si2:
C, 63.35; H, 10.44; N, 2.74. Found: C, 62.91; H, 10.26; N,
3.17. [a]D25 = –17.2 (c 0.98, CHCl3).
the isolation, the crude amine was treated with Boc2O to
afford the Boc-protected azetidine 24 in 72% yield for two
steps.28
In conclusion, we have developed a short and efficient
route to various saturated N-heterocycles. Our strategy is
highlighted by a highly selective Mannich dimerization
followed by an unprecedented dehydrative cyclization
reaction with the Staab reagent. The application of this
strategy to the synthesis of natural products is underway
and will be reported in due course.
Acknowledgment
We thank the Fonds der Chemischen Industrie for a Liebig Stipen-
dium (M.C.) and Prof. Dieter Enders for his encouragement and
support.
References
(1) Hutchinson, A.; Nadin, A. J. Chem. Soc., Perkin Trans. 1
2000, 2862.
(2) Breinbauer, R.; Vetter, I. R.; Waldmann, H. Angew. Chem.
Int. Ed. 2002, 41, 2878.
(3) Astrophylline: (a) Lloyd, H. A. Tetrahedron Lett. 1965, 50,
4537. (b) Schaudt, M.; Blechert, S. J. Org. Chem. 2003, 68,
2913.
(4) Trachelanthamidine: Liddell, J. R. Nat. Prod. Rep. 2000, 17,
455.
(5) Ezetimibe: Earl, J.; Kirkpatrick, P. Nat. Rev. Drug Discov.
2003, 2, 97.
(16) Holmes, A. B.; Smith, A. L.; Williams, S. F.; Hughes, L. R.;
Lidert, Z.; Swithenbank, C. J. Org. Chem. 1991, 56, 1393.
(17) 5-tert-Butyldimethylsilyloxypentanal afforded the
corresponding dimer in 94% ee as a 2:1 mixture in favor of
the syn-diastereomer.
(6) For another interesting approach, see: Banwell, M. G.; Beck,
D. A. S.; Smith, J. A. Org. Biomol. Chem. 2004, 2, 157.
(7) (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed.
Engl. 1971, 10, 496. (b) Hajos, Z. G.; Parrish, D. R. J. Org.
Chem. 1974, 39, 1615.
(8) (a) List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc.
2000, 122, 2395. (b) Northrup, A. B.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2002, 124, 6798.
(9) (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336. (b) List, B.;
Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc.
2002, 124, 827.
(10) For an account, see: Cordova, A. Acc. Chem. Res. 2004, 37,
102.
(11) For other leading references, see: (a) Wenzel, A. G.;
Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
(b) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc. 2003, 125,
338. (c) Kobayashi, S.; Matsubara, R.; Nakamura, Y.;
Kitagawa, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125,
2507. (d) Matsunaga, S.; Kumagai, N.; Harada, S.;
Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 4712.
(e) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 3734. (f) Uraguchi, D.; Terada,
M. J. Am. Chem. Soc. 2004, 126, 5356. (g) Akiyama, T.;
Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed.
2004, 43, 1566.
(18) Pulz, R.; Al-Harrasi, A.; Reissig, H.-U. Org. Lett. 2002, 4,
2353.
(19) (a) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801.
(b) Harris, J. M.; Padwa, A. J. Org. Chem. 2003, 68, 4371.
(c) Pu, X.; Ma, D. J. Org. Chem. 2003, 68, 4400.
(20) (a) Mitsunobu, O. Synthesis 1981, 1. (b) Itoh, T.; Miyazaki,
M.; Nagata, K.; Yokoya, M.; Nakamura, S.; Oshawa, A.
Heterocycles 2002, 58, 115.
(21) (a) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351.
(b) Staab, H. A.; Bauer, H.; Schneider, K. M. Azolides in
Organic Synthesis and Biochemistry; Wiley-VCH:
Weinheim, 2002.
(22) (a) Mulvihill, M. J.; Cesario, C.; Smith, V.; Beck, P.; Nigro,
A. J. Org. Chem. 2004, 69, 5124. (b) Totleben, M. J.;
Freeman, J. P.; Szmuszkovicz, J. J. Org. Chem. 1997, 62,
7319.
(23) For a review, see: Couty, F.; Evano, G.; Prim, D. Mini-Rev.
Org. Chem. 2004, 1, 133.
(24) (a) Barluenga, J.; Sanz, R.; Fananas, F. J. J. Org. Chem.
1997, 62, 5953. (b) Enders, D.; Gries, J.; Kim, Z.-S. Eur. J.
Org. Chem. 2004, 4471.
Synlett 2004, No. 15, 2751–2755 © Thieme Stuttgart · New York