Hsp90 Inhibitors
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 2 827
(3) Gorre, M. E.; Ellwood-Yen, K.; Chiosis, G.; Rosen, N.; Sawyers, C.
L. BCR-ABL point mutants isolated from patients with imatinib
mesylate-resistant chronic myeloid leukemia remain sensitive to
inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood
2002, 100, 3041-3044.
(4) (a) Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang. L.; Boehm, M. F.;
Fritz, L. C.; Burrows, F. J. A high-affinity conformation of Hsp90
confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425,
407-410. (b) Workman, P. Altered states: selectively drugging the
Hsp90 cancer chaperone. Trends Mol. Med. 2004, 10, 47-51.
(5) Yun, B.-G.; Huang, W.; Leach, N.; Hartson, S. D.; Matts, R. L.
Novobiocin induces a distinct conformation of Hsp90 and alters
Hsp90-cochaperone-client interactions. Biochemistry 2004, 43, 8217-
8229.
(6) The NCI clinical protocol consists of injecting a DMSO solution of
17-AAG.
(7) (a) Glaze, E. R.; Smith, A. C.; Johnson, D. W.; McCormick, D. L.;
Brown, A. B.: Levin, B. S.; Krishnaraj, R.; Lyubimov, A.; Egorin,
M. J.; Tomaszewski, J. E. Dose range-finding toxicity studies of 17-
DMAG. Proc. Am. Assoc. Cancer. Res. 2003, 44, 162-162. (b)
Eiseman, J. L.; Lan, J.; Lagatutta, T. F.; Hamburger, D. R.; Joseph,
9-(3-tert-Butylamino-propyl)-8-(2-iodo-5-methoxy-phenylsul-
fanyl)-9H-purin-6-ylamine (40). Free Base: tR ) 5.87 min
1
(Conditions II). mp: 165-166 °C. H NMR (CDCl3) δ 8.33 (s,
1H), 7.70 (d, J ) 8.7 Hz, 1H), 6.69 (d, J ) 2.7 Hz, 1H), 6.55 (dd,
J ) 8.7 & 2.7 Hz, 1H), 5.90 (br. s, 2H), 4.30 (t, J ) 6.6 Hz, 2H),
3.66 (s, 3H), 2.50 (t, J ) 6.6 Hz, 2H), 1.96 (quint., J ) 6.6 Hz,
2H), 1.05 (s, 9H). 13C NMR (CDCl3:CD3OD 3:1) 160.5, 154.8,
152.7, 151.1, 145.9, 140.8, 136.4, 119.6, 118.4, 116.1, 90.0, 55.4,
51.4, 41.7, 38.7, 29.9, 27.9 (3C). H3PO4 Salt: tR ) 4.77 min
(Conditions I). mp: 249-253 °C. 1H NMR (D2O) δ 8.03 (s, 1H),
7.65 (d, J ) 8.8 Hz, 1H), 6.86 (d, J ) 2.9 Hz, 1H), 6.61 (dd, J )
8.8 & 2.9 Hz, 1H), 4.17 (t, J ) 6.8 Hz, 2H), 3.60 (s, 3H), 2.82 (t,
J ) 8.0 Hz, 2H), 2.01 (quint., J ) 7.4 Hz, 2H), 1.15 (s, 9H). 13C
NMR (D2O) δ 159.9, 154.2, 152.3, 150.0, 146.7, 141.0, 134.9,
119.0, 118.9, 116.3, 91.0, 57.1, 55.5, 41.1, 38.4, 26.1, 24.7 (3C).
Anal. (C19H25IN6OS‚H3PO4‚0.08EtOH) C, H, N.
8-(2-Iodo-5-methoxy-phenylsulfanyl)-9-(2-isobutylamino-eth-
yl)-9H-purin-6-ylamine (41). Free Base: tR ) 6.10 min (Condi-
tions II). mp: 155-158 °C. 1H NMR (CDCl3/CD3OD 3:1) δ 8.09
(s, 1H), 7.64 (d, J ) 8.8 Hz, 1H), 6.77 (d, J ) 2.9 Hz, 1H), 6.53
(dd, J ) 8.7 & 2.9 Hz, 1H), 4.22 (t, J ) 6.5 Hz, 2H), 3.60 (s, 3H),
2.83 (t, J ) 6.5 Hz, 2H), 2.27 (d, J ) 6.9 Hz, 2H), 1.56 (non., J
) 6.7 Hz, 1H), 0.73 (d, J ) 6.6 Hz, 6H). 13C NMR (DMSO-d6)
160.4, 156.0, 153.8, 151.3, 143.5, 140.7, 140.0, 120.2, 115.8, 114.9,
E.;
Covey,
J.
and
M.;
Egorin,
M.
of
J.
Phar-
macokinetics
pharmacodynamics
17-demethoxy
17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC
707545) in C. B-17 SCID mice bearing MDA-MB-231 human breast
cancer xenografts. Cancer Chemother. Pharmacol. 2005, 55, 21-
32.
(8) (a) Ikuina, Y.; Amishiro, N.; Miyata, M.; Narumi, H.; Ogawa, H.;
Akiyama, T.; Shiotsu, Y.; Akinaga, S.; Murakata, C. Synthesis and
antitumor activity of novel O-carbamoylmethyloxime derivatives of
radicicol. J. Med. Chem. 2003, 46, 2534-2541. Furthermore,
radicicol and its oximes contain an oxirane ring which has been
viewed as a liability for stability and toxicity, prompting the synthesis
of cycloproparadicicol: (b) Yang, Z. Q.; Geng, X.; Solit, D.; Pratilas,
C. A.; Rosen, N.; Danishefsky, S. J. New efficient synthesis of
resorcinylic macrolides via ynolides: establishment of cyclopro-
paradicicol as synthetic feasible preclinical anticancer agent based
on Hsp90 as the target. J. Am. Chem. Soc. 2004, 126, 7881. (b) Yang,
Z.-Q.; Danishefsky, S. J. A concise route to benzofused macrolactones
via ynolides: cycloproparadicicol. J. Am. Chem. Soc. 2003, 125,
9602-9603.
(9) (a) Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen, N. Develop-
ment of a purine-scaffold novel class of Hsp90 binders that inhibit
the proliferation of cancer cells and induce the degradation of HER-2
tyrosine kinase. Bioorg. Med. Chem. Lett. 2002, 10, 3555-3564. (b)
Vilenchik, M.; Solit, D.; Basso, A.; Huezo, H.; Lucas, B.; He, H.;
Rosen, N.; Spampinato, C.; Modrich, P.; Chiosis, G. Targeting wide-
range oncogenic transformation via PU24FCl, a specific inhibitor of
tumor Hsp90. Chem. Biol. 2004, 11, 787-797. (c) Chiosis, G.; Rosen,
N. Small molecule composition for binding to Hsp90. WO 0236075,
2002.
(10) (a) Drysdale, M. J.; Dymock, B. W.; Barril-Alonso, X.; Workman,
P. 3,4-Diarylpyrazoles and their use in the therapy of cancer. WO
03/055860 A1, 2003. (b) Wright, L.; Barril, X.; Dymock, B.;
Sheridan, L.; Surgenor, A.; Beswick, M.; Drysdale, M.; Collier, A.;
Massey, A.; Davies, N.; Fink, a.; Fromont, C.; Aherne, W.; Boxall,
K.; Sharp, S.; Workman, P.; Hubbard, R. Structure-activity relation-
ships in purine-based inhibitor binding to Hsp90 isoforms Chem. Biol.
2004, 11, 775-785. (c) Dymock, B.; Barril, X.; Beswick, M.; Collier,
A.; Davies, N.; Drysdale, M.; Fink, A.; Fromont, C.; Hubbard, R.
E.; Massey, A.; Surgenor, A.; Wright, L. Adenine derived inhibitors
of the molecular chaperone HSP90-SAR explained through multiple
X-ray structures. Bioorg. Med. Chem. Lett. 2004, 14, 325-328. (d)
Dymock, B. W.; Barril, X.; Brough, P. A.; Cansfield, J. E.; Massey,
A.; McDonald, E.; Hubbard, R. E.; Surgenor, A.; Roughley, S. D.;
Webb, P.; Workman, P.; Wright, L.; Drysdale, M. J. Novel, potent
small-molecule inhibitors of the molecular chaperone Hsp90 discov-
ered through structure-based design J. Med. Chem. 2005, 48, 4212-
4215. Structure of Hsp90 in complex with 3a: pdb code 1UY6, and
with 3b: pdb code 1UYF.
87.1, 57.4, 55.8, 48.8, 43.8, 28.4, 21.0 (2C). H3PO4 Salt: tR
)
5.10 min (Conditions I). mp: 214-216 °C. 1H NMR (D2O) δ 8.12
(s, 1H), 7.79 (d, J ) 8.3 Hz, 1H), 6.95 (br. s, 1H), 6.73 (d, J ) 8.3
Hz, 1H), 4.51 (m, 2H), 3.65 (s, 3H), 3.36 (m, 2H), 2.83 (d, J ) 6.6
Hz, 2H), 1.89 (sept., J ) 6.4 Hz, 1H), 0.87 (d, J ) 6.2 Hz, 6H).
13C NMR (D2O) δ 160.1, 153.9, 152.1, 150.6, 146.7, 141.2, 134.8,
119.3, 119.0, 116.6, 91.1, 55.6, 54.7, 46.1, 40.0, 25.5, 19.0 (2C).
Anal. (C18H23IN6OS‚H3PO4) C, H, N.
9-[2-(2,2-Dimethyl-propylamino)-ethyl]-8-(2-iodo-5-methoxy-
phenylsulfanyl)-9H-purin-6-ylamine (42). Free Base: tR ) 5.13
1
min (Conditions II). mp: 156-158 °C. H NMR (CDCl3/CD3OD
3:1) δ 8.21 (s, 1H), 7.74 (d, J ) 8.7 Hz, 1H), 6.87 (d, J ) 2.9 Hz,
1H), 6.63 (dd, J ) 8.7 & 2.9 Hz, 1H), 4.32 (t, J ) 6.4 Hz, 2H),
3.71 (s, 3H), 2.95 (t, J ) 6.4 Hz, 2H), 2.31 (s, 2H), 0.83 (s, 9H).
13C NMR (CDCl3:CD3OD 3:1) 160.5, 154.6, 152.7, 151.1, 146.5,
140.7, 136.9, 119.6, 118.3, 115.9, 89.7, 61.9, 55.4, 49.5, 43.9, 31.4,
27.5 (3C). H3PO4 Salt: tR ) 5.13 min (Conditions II). mp: 162-
164 °C. 1H NMR (D2O) δ 8.10 (s, 1H), 7.75 (d, J ) 8.7 Hz, 1H),
6.89 (d, J ) 2.8 Hz, 1H), 6.68 (dd, J ) 8.7 & 2.8 Hz, 1H), 4.51 (t,
J ) 5.9 Hz, 2H), 3.64 (s, 3H), 3.37 (t, J ) 5.9 Hz, 2H), 2.84 (s,
2H), 0.96 (s, 9H). 13C NMR (D2O) 160.1, 154.2, 152.2, 150.4,
147.3, 141.2, 135.0, 119.2, 119.0, 116.5, 91.0, 59.3, 55.6, 47.0,
40.2, 29.9, 26.3 (3C). Anal. (C19H25IN6OS‚H3PO4) C, H, N.
Acknowledgment. We thank T. Jiang for exploratory
synthetic work, and R. Mansfield for his expertise in formula-
tion.
References
(1) For recent reviews, see: (a) Kamal, A.; Boehm, M. F.; Burrows, F.
J. Therapeutic and diagnostic implications of Hsp90 activation. Trends
Mol. Med. 2004, 10, 283-290. (b) Dymock, B. W.; Drysdale, M. J.;
McDonald, E.; Workman, P. Inhibitors of Hsp90 and other chaper-
ones for the treatment of cancer. Expert Opin. Ther. Pat. 2004, 14,
837-847. (c) Isaacs, J. S.; Wanping, X.; Neckers, L. Heat shock
protein 90 as a molecular target for cancer therapeutics. Cancer Cell
2003, 3, 213. (d) Maloney, A.; Workman, P. Hsp90 as a new
therapeutic target for cancer therapy: the story unfolds. Expert Opin.
Biol. Ther. 2002, 2, 3-24 (e) Richter, K.; Buchner, J. Hsp90:
Chaperoning signal transduction. J. Cell. Physiol. 2001, 188, 281-
290.
(2) For lists of client proteins: (a) Pratt, W. B.; Toft, D. O. Regulation
of signaling protein function and trafficking by the hsp90/hsp70-
based machinery. Exp. Biol. Med. 2003, 228, 111-133. (b) Workman,
P. Combinatorial attack on multistep oncogenesis by inhibiting the
Hsp90 molecular chaperone. Cancer Lett. 2004, 206, 149-157. (c)
Zhang, H.; Burrows, F. Targeting multiple signal transduction
pathways through inhibition of Hsp90. J. Mol. Med. 2004, 82, 488-
499.
(11) Clevenger, R. D.; Blagg, B. S. J. Design, synthesis, and evaluation
of a radicicol and geldanamycin chimera, radamide. Org. Lett. 2004,
6, 4459-4462.
(12) Chiosis, G.; Lucas, B.; Huezo, H.; Solit, D.; Basso, A.; Rosen, N.
Development of purine-scaffold small molecule inhibitors of Hsp90.
Curr. Cancer Drug Targets 2003, 3, 371-376.
(13) The benzene ring of 3a was not designed to have exactly the same
orientation as the quinone ring of geldanamycin. Rather, the
trimethoxybenzene moiety was designed to point in the same general
direction and form a hydrogen bond with Lys112, an amino acid
which forms a hydrogen bond with the quinone ring of geldanamycin.