Katie J. Doores and Benjamin G. Davis*
Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, Mansfield Road, Oxford, UK OX1 3TA.
E-mail: ben.davis@chem.ox.ac.uk; Fax: + 44 (0)1865 285002;
Tel: + 44 (0)1865 275652
Notes and references
Scheme 2 (i) Enzyme (0.1 mol%), Et3N, DMF–H2O (1 : 1). Acyl donor :
1 B. G. Davis, Chem. Rev., 2002, 102, 579.
2 C.-H. Wong and G. M. Whitesides, Enzymes in Synthetic Organic
Chemistry, Pergamon, Oxford, 1994.
acceptor, 1 : 3.
3 C.-H. Wong, M. Schuster, P. Wang and P. Sears, J. Am. Chem. Soc.,
1993, 115, 5893.
4 K. Witte, O. Seitz and C.-H. Wong, J. Am. Chem. Soc., 1998, 120,
1979.
5 K. Witte, P. Sears, R. Martin and C.-H. Wong, J. Am. Chem. Soc.,
1997, 119, 2114.
Table 2 Results from enzyme catalysed ligation reactions according
to Scheme 2 with amino acid acyl acceptors
Yield (%)a
(5 days) S166C
Amino acid
n Product
WT -g
-e -c
6 Z. Machova, R. Eggelkraut-Gottanka, N. Wehofsky, F. Bordusa and
A. Beck-Sickinger, Angew. Chem., Int. Ed., 2003, 42, 4916.
7 K. Matsumato, B. G. Davis and J. Jones, Chem. Eur. J., 2002, 8,
4129.
8 K. Khumtaveeporn, G. DeSantis and J. B. Jones, Tetrahedron:
Asymmetry, 1999, 10, 2563.
Gly–NH2?HCl 1 Glc–Z–Ser–Gly–NH2 8
b-Ala–NH2?HCl 2 Glc–Z–Ser–b-Ala–NH2
60
22
73 90 20
—
—
b
b
b
9
53
36
—
—
b
c-Aba–NH2?HCl 3 Glc–Z–Ser–c-Aba–NH2 10 15
a
b
Yield based on compound 7. Ligation not attempted.
9 A. Scheurer, P. Mosset, W. Bauer and R. W. Saalfrank, Eur. J. Org.
Chem., 2001, 16, 3067.
10 D. Rijkers, H. Adams, H. C. Hemker and G. Tesser, Tetrahedron, 1995,
51, 11235.
11 Y. Bilokin, A. Melman, V. Niddam, B. Benhamu and M. Bachi,
Tetrahedron, 2000, 56, 3425.
12 C. Taylor, Tetrahedron, 1998, 54, 11317.
13 K. P. R. Kartha, L. Ballell, J. Bilke, M. McNeil and R. A. Field,
J. Chem. Soc., Perkin Trans. 1, 2001, 770.
14 R. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 212.
15 G. Grundler and R. R. Schmidt, Liebigs Ann. Chem., 1984, 1826.
16 P. Sjolin and J. Kihlberg, Tetrahedron Lett., 2000, 41, 4435.
17 E. Plettner, K. Khumtaveeporn, X. Shang and J. Jones, Bioorg. Med.
Chem. Lett., 1998, 8, 2291.
Scheme 3 Synthesis of glycolipid analogue via direct enzymatic ligation.
In summary, we have shown that combined site-directed
mutagenesis and chemical modification can be used to broaden
the substrate specificity of SBL and was utilised in the first direct
ligations of hexosyl amino acids. A triamino substituent in the S1
pocket leads to the greatest substrate broadening and was used in
the synthesis of various glycopeptides and analogues of com-
pounds showing anti-HIV activity.
18 T. Bruice and G. Kenyon, J. Protein. Chem., 1982, 1, 47.
19 G. Ellman, K. Courtney, V. Andres and R. Featherstone, Biochem.
Pharmacol., 1961, 7, 88.
20 K. Khumtaveeporn, A. Ullmann, K. Matsumoto, B. G. Davis and
J. Jones, Tetrahedron: Asymmetry, 2001, 12, 249.
21 D.-R. Hwang, P. Helquist and M. Shekhani, J. Org. Chem., 1985, 50,
1265.
22 B. Faroux-Corlay, L. Clary, C. Gadras, D. Hammache, J. Greiner,
C. Santaella, A.-M. Aubertin, P. Vierling and J. Fantini, Carbohydr.
Res., 2000, 327, 223.
We thank the Leverhulme Trust for funding.
170 | Chem. Commun., 2005, 168–170
This journal is ß The Royal Society of Chemistry 2005