ORGANIC
LETTERS
2005
Vol. 7, No. 3
443-446
Synthesis and Self-Assembly of
Functionalized Donor−σ−Acceptor
Molecules
Hengfeng Li, Edwin A. Homan, Andrew J. Lampkins, Ion Ghiviriga, and
Ronald K. Castellano*
Department of Chemistry, UniVersity of Florida, P.O. Box 117200,
GainesVille, Florida 32611-7200
Received November 22, 2004
ABSTRACT
3,5,7-Tris(arylmethyl)-1-aza-adamantanetrione donor−σ−acceptor compounds have been synthesized in four steps. Computational and 1H NMR
analyses rationalize the solubility, gelation, and conformational properties of the C3-symmetric molecules toward employing
σ-coupled donor−
acceptor interactions in molecular self-assembly.
Donor-σ(spacer)-acceptor molecules1 are unique alterna-
tives to traditional π-conjugated chromophores in applica-
tions ranging from nonlinear optics2,3 to unimolecular
electrical rectification;4 a high transparency in the visible
region and significantly dipolar excited state5 underlie their
function. While well-studied at the molecular level, only
recently have these chromophores been considered as build-
common motif within the donor-σ-acceptor class features
a nitrogen donor atom and carbonyl π-acceptor at opposite
ends of a saturated three-carbon spacer;8 the resulting
through-bond interactions1b are apparent even in the ground
state where they can influence the stereoselectivity of
addition to the carbonyl group9 and bias conformation at
nitrogen.10 We have initiated a research study that employs
such donor-σ-acceptor chromophores in supramolecular
ing blocks for advanced materials and polymers.6,7
A
(1) (a) Cookson, R. C.; Henstock, J.; Hudec, J. J. Am. Chem. Soc. 1966,
88, 1060-1062. (b) Hoffmann, R.; Imamura, A.; Hehre, W. J. J. Am. Chem.
Soc. 1968, 90, 1499-1509.
(7) Kawashima, N.; Kameyama, A.; Nishikubo, T.; Nagai, T. J. Polym.
Sci., Part A: Polym. Chem. 2001, 39, 1764-1773.
(8) (a) Verhoeven, J. W.; Dirkx, I. P.; de Boer, T. J. Tetrahedron Lett.
1966, 7, 4399-4404. (b) Dekkers, A. W. J.; Verhoeven, J. W.; Speckamp,
W. N. Tetrahedron 1973, 29, 1691-1696. (c) Worrell, C.; Verhoeven, J.
W.; Speckamp, W. N. Tetrahedron 1974, 30, 3525-3531. (d) Pasman, P.;
Verhoeven, J. W.; de Boer, T. J. Tetrahedron 1976, 32, 2827-2830.
(9) (a) Hahn, J. M.; Le Noble, W. J. J. Am. Chem. Soc. 1992, 114, 1916-
1917. (b) Coxon, J. M.; Houk, K. N.; Luibrand, R. T. J. Org. Chem. 1995,
60, 418-427. (c) Gung, B. W.; Wolf, M. A. J. Org. Chem. 1996, 61, 232-
236. (d) Tomoda, S.; Senju, T. Tetrahedron 1999, 55, 5303-5318. (e)
Yadav, V. K.; Senthil, G.; Jeyaraj, D. A. Tetrahedron 1999, 55, 14211-
14218.
(2) (a) Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.; Persoons,
A. J. Mater. Chem. 1997, 7, 2175-2189. (b) Rao, J. L.; Bhanuprakash, K.
Synth. Met. 2003, 132, 315-324.
(3) (a) Schuddeboom, W.; Krijnen, B.; Verhoeven, J. W.; Staring, E. G.
J.; Rikken, G.; Oevering, H.; Jonker, S. A. Abstr. Pap. Am. Chem. Soc.
1991, 202, 222-POLY. (b) Schuddeboom, W.; Krijnen, B.; Verhoeven, J.
W.; Staring, E. G. J.; Rikken, G.; Oevering, H. Chem. Phys. Lett. 1991,
179, 73-78.
(4) (a) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277-
283. (b) Metzger, R. M. Chem. ReV. 2003, 103, 3803-3834.
(5) Wasielewski, M. R. Chem. ReV. 1992, 92, 435-461.
(6) (a) Oosterbaan, W. D.; van Gerven, P. C. M.; van Walree, C. A.;
Koeberg, M.; Piet, J. J.; Havenith, R. W. A.; Zwikker, J. W.; Jenneskens,
L. W.; Gleiter, R. Eur. J. Org. Chem. 2003, 3117-3130. (b) Oosterbaan,
W. D.; Kaats-Richters, V. E. M.; Jenneskens, L. W.; Van Walree, C. A. J.
Polym. Sci., Part A: Polym. Chem. 2004, 42, 4775-4784.
(10) (a) Krijnen, B.; Beverloo, H. B.; Verhoeven, J. W.; Reiss, C. A.;
Goubitz, K.; Heijdenrijk, D. J. Am. Chem. Soc. 1989, 111, 4433-4440. (b)
De Ridder, D. J. A.; Goubitz, K.; Schenk, H.; Krijnen, B.; Verhoeven, J.
W. HelV. Chim. Acta 2003, 86, 799-811. (c) De Ridder, D. J. A.; Goubitz,
K.; Schenk, H.; Krijnen, B.; Verhoeven, J. W. HelV. Chim. Acta 2003, 86,
812-826.
10.1021/ol047597y CCC: $30.25
© 2005 American Chemical Society
Published on Web 01/13/2005