Hemolytic activity. The hemolytic activity of the peptides
was determined in quadruplo. Human blood was collected
into EDTA-tubes and centrifuged to remove the buffy coat.
The residual erythrocytes were washed three times in 0.85%
saline. Serial two-fold dilutions of the peptides in saline were
prepared in sterilized round-bottom 96-well plates (polystyrene,
U-bottom, Costar) using 100 lL volumes (500–0.5 lM). Red
blood cells were diluted with saline to 1/25 packed volume of
cells and 50 lL of the resulting cell suspension was added to each
well. Plates were incubated while gently shaking at 37 ◦C for 4 h.
Next, the microtiter plate was quickly centrifuged (1000 g, 5 min)
and 50 lL supernatant of each well was transported into a flat-
bottom 96-well plate (Costar). The absorbance was measured at
405 nm using a mQuant microplate spectrophotometer (Bio-Tek
Instruments). The Ablank was measured in the absence of additives
and 100% hemolysis (Atot) in the presence of 1% Triton X-100
S. H. Heinemann and S. L. Schreiber, J. Am. Chem. Soc., 1990, 112,
3702–3704.
5 U. Koert, L. Al-Momani and J. R. Pfeifer, Synthesis, 2004, 8, 1129–
1146 and references cited therein.
6 S. You, S. Peng, L. Lien, J. Breed, M. S. P. Sansom and G. A. Woolley,
Biochemistry, 1996, 35, 6225–6232.
7 (a) N. Matsumori, N. Yamaji, S. Matsuoka, T. Oishi and M.
Murata, J. Am. Chem. Soc., 2002, 124, 4180–4181; (b) N. Yamaji,
N. Matsumori, S. Matsuoka, T. Oishi and M. Murata, Org. Lett.,
2002, 4, 2087–2089; (c) N. Matsumori, N. Eiraku, S. Matsuoka, T.
Oishi, M. Murata, T. Aoki and T. Ide, Chem. Biol., 2004, 11, 673–679.
8 (a) G. M. Grotenbreg, E. Spalburg, A. J. de Neeling, G. A. van der
Marel, H. S. Overkleeft, J. H. van Boom and M. Overhand, Bioorg.
Med. Chem., 2003, 11, 2835–2841; (b) G. M. Grotenbreg, M. S. M.
Timmer, A. L. Llamas-Saiz, M. Verdoes, G. A. van der Marel,
M. J. van Raaij, H. S. Overkleeft and M. Overhand, J. Am. Chem.
Soc., 2004, 126, 3444–3446; (c) G. M. Grotenbreg, M. Kronemeijer,
M. S. M. Timmer, F. El Oualid, R. M. van Well, M. Verdoes, E.
Spalburg, P. A. V. van Hooft, A. J. de Neeling, D. Noort, J. H. van
Boom, G. A. van der Marel, H. S. Overkleeft and M. Overhand,
J. Org. Chem., 2004, 69, 7851–7859; (d) G. M. Grotenbreg, A. E.
Christina, A. E. M. Buizert, G. A. van der Marel, H. S. Overkleeft
and M. Overhand, J. Org. Chem., 2004, 69, 8331–8339.
in saline. The percentage hemolysis is determined as (Apep
−
Ablank)/(Atot − Ablank)100.
Conductivity measurements. Planar lipid membranes were
prepared by painting a solution of diphytanoylphosphatidyl-
cholin (DPhPC, Avanti Polar Lipids, Alabaster, AL) in n-decane
(25 mg ml−1) over the aperture of a polystyrene cuvette with a di-
ameter of 0.15 mm.18 All experiments were performed at ambient
temperature. The used electrolyte solutions at a concentration
of 1 M each were unbuffered. Probes were dissolved in methanol
and added to the trans or cis side (containing the measuring
electrode) of the cuvette. Current detection and recording was
performed with a patch-clamp amplifier Axopatch 200B, a Digi-
data A/D converter and pClamp6 software (Axon Instruments,
Foster City, MA). The acquisition frequency was 5 kHz. The
data were filtered with an digital filter at 50 Hz for further
analysis.
9 (a) N. Izuyima, T. Kato, H. Aoyagi, M. Waki and M. Kondo,
Synthetic aspects of biologically active cyclic peptides - gramicidin
S and tyrocidines, Halstead, Wiley, New York, 1979; (b) E. J. Prenner,
R. N. A. H. Lewis and R. N. McElhaney, Biochim. Biophys. Acta,
1999, 1462, 201–221; (c) D. L. Lee and R. S. Hodges, Biopolymers,
2003, 71, 28–48.
10 (a) A. C. Gibbs, T. C. Bjorndahl, R. S. Hodges and D. S. Wishart,
J. Am. Chem. Soc., 2002, 124, 1203–1213; (b) K. Yamada, M. Unno,
K. Kobayashi, H. Oku, H. Yamamura, S. Araki, H. Matsumoto, R.
Katakai and M. Kawai, J. Am. Chem. Soc., 2002, 124, 12684–12688;
(c) S. E. Hull, R. Karlsson, P. Main, M. M. Woolfson and E. J.
Dodson, Nature, 1978, 275, 206–207; (d) A. Stern, W. A. Gibbons
and L. C. Craig, Proc. Natl. Acad. Sci. USA, 1968, 61, 734–741.
11 (a) M. L. Peterson and R. Vince, J. Med. Chem., 1991, 34, 2787–2797;
(b) B. P. Gangamani, V. A. Kumar and K. N. Ganesh, Tetrahedron,
1996, 52, 15017–15030; (c) L. L. Klein, L. P. Li, H. J. Chen, C. B.
Curty, D. A. DeGoey, D. J. Grampovnik, C. L. Leone, S. A. Thomas,
C. M. Yeung, K. W. Funk, V. Kishore, E. O. Lundell, D. Wodka, J. A.
Meulbroek, J. D. Alder, A. M. Nilius, P. A. Lartey and J. J. Plattner,
Bioorg. Med. Chem., 2000, 8, 1677–1696.
Acknowledgements
This work was financially supported by the Council for Chemical
Sciences of the Netherlands Organization for Scientific Research
(CW-NWO), the Netherlands Technology Foundation (STW)
and DSM Research. We thank Nico Meeuwenoord and Hans
van den Elst for their technical assistance. Kees Erkelens and
Fons Lefeber are gratefully acknowledged for assistance with
NMR experiments.
12 The sequence of reactions proved to be essential, as LC/MS analysis
of the crude mixtures of 21 and 22 indicated that the remaining
Glu-residues were unexpectedly converted into their methyl ester
counterparts when Staudinger reduction of the azides was performed
following the saponification. Fortunately, this side-reaction was not
observed when the order of reactions was reversed.
13 (a) K. Yamada, H. Ozaki, N. Kanda, H. Yamamura, S. Araki and
M. Kawai, J. Chem. Soc. Perkin Trans. 1, 1998, 3999–4004; (b) R. T.
Ingwall, C. Gilon and M. Goodman, J. Am. Chem. Soc., 1975, 97,
4356–4362.
14 Variation of the reaction conditions (e.g. the reaction sequence,
coupling reagents and their order of addition) did not improve the
cyclization results.
15 The set-up used for antimicrobial testing allows for an experimental
error that can be approximately one dilution range, and the MIC
values therefore need to be referenced to the native peptide GS. This
also explains the deviation from earlier reported MIC values of GS.
16 (a) R. E. W. Hancock and A. Rozek, FEMS Microbiol. Lett., 2002,
206, 143–149; (b) M. Wu, E. Maier, R. Benz and R. E. W. Hancock,
Biochemistry, 1999, 38, 7235–7242.
References
1 (a) K. Matsuzaki, Biochim. Biophys. Acta, 1999, 1462, 1–10; (b) R. M.
Epand and H. J. Vogel, Biochim. Biophys. Acta, 1999, 1462, 11–28.
2 For reviews on antimicrobial peptides: (a) N. Sitaram and R. Nagaraj,
Biochim. Biophys. Acta, 1999, 1462, 29–54; (b) Y. Shai, Biochim.
Biophys. Acta, 1999, 1462, 55–70; (c) M. Dathe and T. Wieprecht,
Biochim. Biophys. Acta, 1999, 1462, 71–87; (d) B. Bechinger, Biochim.
Biophys. Acta, 1999, 1462, 157–183; (e) P. La Rocca, P. C. Biggin, D. P.
Tieleman and M. S. P. Sansom, Biochim. Biophys. Acta, 1999, 1462,
185–200.
3 Gramicidin and Related Ion Channel-Forming Peptides, ed. D. J. Chad-
wick and G. Cardew, Wiley, Chichester, 1999 and references cited
therein.
4 (a) C. J. Stankovic, S. H. Heinemann, J. M. Delfino, F. J. Sigworth
and S. L. Schreiber, Science, 1989, 244, 813–817; (b) C. J. Stankovic,
17 K. Yamada, K. Ando, Y. Takahashi, H. Yamamura, S. Araki and M.
Kawai, J. Pept. Res., 1999, 54, 168–173.
18 P. Mueller and D. O. Rudin, Nature, 1967, 213, 603–604.
2 3 8
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 3 3 – 2 3 8