C O M M U N I C A T I O N S
Scheme 1
give osmabenzynes. Apparently, the γ-carbon of the allenylcarbene
ligand attacked at the â-carbon atom of the acetylide ligands in
the cyclization reaction. At this stage, we are not sure whether the
intramolecular cyclization reactions proceed before or after the
protonation of the terminal CHPh group. Alkynyl transfer from gold
to rhenium has been reported recently.15 Intramolecular coupling
of alkenylcarbene and acetylide ligands has been proposed for the
formation of a novel osmium isometallabenzene.2b
In summary, we have developed a more efficient synthetic route
to prepare osmabenzynes starting from an allenylcarbene complex.
The new method allows us to obtain metallabenzynes with various
substituents in short reaction time under mild reaction conditions.
Extension of the chemistry to prepare metallabenzynes with other
metals and substituents is in progress.
Acknowledgment. This work was supported by the Hong Kong
Research Grant Council.
mixture of phosphorus-containing species was produced. The
expected osmabenzyne was produced in only trace amount, if any.
Interestingly, when the reaction was performed in the presence of
NEt3, osmabenzyne 3 was produced as the major species detectable
by 31P NMR (eq 2), although the reaction is slow and takes a day
to go to completion. The reaction also produced oligomers of HCt
Supporting Information Available: Experimental procedures and
characterization data (PDF); X-ray crystallographic files (CIF). This
References
(1) Bleeke, J. R. Chem. ReV. 2001, 101, 1205.
(2) Examples of recent experimental work: (a) Landorf, C. W.; Jacob, V.;
Weakley, T. J. R.; Haley, M. M. Organometallics 2004, 23, 1174. (b)
Barrio, P.; Esteruelas, M. A.; Onate, E. J. Am. Chem. Soc. 2004, 126,
1946. (c) Xia, H. P.; He, G. M.; Zhang, H.; Wen, T. B.; Sung, H. H. Y.;
Williams. I. D.; Jia, G. J. Am. Chem. Soc. 2004, 126, 6682. (d) Gilbertson,
R. D.; Lau, T. L. S.; Lanza, S.; Wu, H. P.; Weakley, T. J. R.; Haley, M.
M. Organometallics 2003, 22, 3279. (e) Paneque, M.; Posadas, C. M.;
Poveda, M. L.; Rendo´n, N.; Salazar, V.; On˜ate, E.; Mereiter, K. J. Am.
Chem. Soc. 2003, 125, 9898. (f) Effertz, U.; Englert, U.; Podewils, F.;
Salzer, A.; Wagner, T.; Kaupp, M. Organometallics 2003, 22, 264. (g)
Jacob, V.; Weakley, T. J. R.; Haley, M. M. Angew. Chem., Int. Ed. 2002,
41, 3470. (h) Wu, H. P.; Lanza, S.; Weakley, T. J.; Haley, M. M.
Organometallics 2002, 21, 2824. (i) Bleeke, J. R.; Hinkle, P. V.; Rath,
N. P. Organometallics 2001, 20, 1939. (j) Bleeke, J. R.; Blanchard, J. M.
B.; Donnay, E. Organometallics 2001, 20, 324. (k) Rickard, C. E. F.;
Roper, W. R.; Woodgate, S. D.; Wright, L. J. Angew. Chem., Int. Ed.
2000, 39, 750.
CPh and other unidentified phosphorus-containing species, which
can cause difficulty in the isolation of pure samples of 3 from the
reaction mixture. Our attempts to obtain osmabenzynes from the
reactions of 2 with other alkynes such as HCtCSiMe3 or aliphatic
terminal alkynes under similar conditions were unsuccessful.
The promoting effect of NEt3 in the production of osmabenzyne
3 from the reaction of 2 with HtCPh led us to speculate that 3
may be formed from an acetylide intermediate. To test this
hypothesis, we have treated 2 with (PPh3)AuCtCPh14 in the
presence of HNEt3Cl. We were pleased to learn that the reaction
quickly produced the expected 3 (Scheme 1). In the absence of
HNEt3Cl, the reaction also produced 3, but the rate was slow and
other unidentified species were also formed, as one might expect.
The chemistry can be extended to prepare new osmabenzynes
using other gold(I) acetylide derivatives. Thus, treatment of 2 with
(PPh3)AuCtC-tolyl produced the tolyl-containing osmabenzyne 4,
treatment with (PPh3)AuCtC-n-Bu produced the n-Bu-containing
osmabenzyne 5, and treatment with (PPh3)AuCtCSiMe3 produced
the SiMe3-containing osmabenzyne 6. Most of the reactions are
completed in less than 3 h. It is noted that the reported preparation
of the osmabenzyne complex Os(tCC(SiMe3)dC(CH3)C(SiMe3)d
CH)Cl2(PPh3)2 from the reaction of OsCl2(PPh3)3 with HCtCSiMe3
takes 5 days.
All the new osmabenzynes have been characterized by elemental
analysis, MS, and NMR spectroscopy.8 The structures of 3-5 have
been confirmed by X-ray diffraction.8 The structural features of
the metallacycles are very similar to those of reported ones.4 The
NMR (31P, 1H, and 13C) spectroscopic data are fully consistent with
the solid-state structures.
The detailed mechanism for the formation of 3-6 in the reactions
of 2 with (PPh3)AuCtCR in the presence of HNEt3Cl is not very
clear yet. It is possible that reactions of 2 with (PPh3)AuCtCR
may initially produce the acetylide complexes OsCl(CtCR)(dCPh-
η2-CHdCdCHPh)(PPh3)2 or allenylcarbene osmium complexes
with a coordinated gold acetylide, which react with HNEt3Cl to
(3) Examples of recent theoretical work: (a) Iron, M. A.; Martin, J. M. L.;
van der Boom, M. E. Chem. Commun. 2003, 132. (b) Iron, M. A.; Martin,
J. M. L.; van der Boom, M. E. J. Am. Chem. Soc. 2003, 125, 13020. (c)
Iron, M. A.; Martin, J. M. L.; van der Boom, M. E. J. Am. Chem. Soc.
2003, 125, 11702. (d) Iron, M. A.; Lucassen, A. C. B.; Cohen, H.; van
der Boom, M. E.; Martin, J. M. L. J. Am. Chem. Soc. 2004, 126, 11699.
(4) (a) Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 40,
1951. (b) Jia, G. Acc. Chem. Res. 2004, 37, 479.
(5) (a) Wen, T. B.; Yang, S. Y.; Zhou, Z. Y.; Lin, Z.; Lau, C. P.; Jia, G.
Organometallics 2000, 19, 3757. (b) Wen, T. B.; Zhou, Z. Y.; Lo, M. F.;
Williams, I. D.; Jia, G. Organometallics 2003, 22, 5217.
(6) Wen, T. B.; Hung, W. Y.; Zhou, Z. Y.; Lo, M. F.; Williams, I. D.; Jia, G.
Eur. J. Inorg. Chem. 2004, 2837.
(7) Trnka, T. M.; Day, M. W.; Grubbs, R. H. Organometallics 2001, 20, 3845.
(8) See Supporting Information for details.
(9) (a) Esteruelas, M. A.; Lahoz, F. J.; On˜ate, E.; Oro, L. A.; Valero, C.;
Zeier, B. J. Am. Chem. Soc. 1995, 117, 7935. (b)Werner, H.; Stu¨er, W.;
Laubender, M.; Lehmann, C.; Herbst-Irmer, R. Organometallics 1997,
16, 2236.
(10) (a) Castarlenas, R.; Esteruelas, M. A.; On˜ate, E. Organometallics 2001,
20, 2294. (b) Liu, S. H.; Lo, S. T.; Wen, T. B.; Zhou, Z. Y.; Lau, C. P.;
Jia, G. Organometallics 2001, 20, 667. (c) Bohanna, C.; Buil, M. L.;
Esteruelas, M. A.; On˜ate, E.; Valero, C. Organometallics 1999, 18, 5176.
(11) Wen, T. B.; Zhou, Z. Y.; Lau, C. P.; Jia, G. Organometallics 2000, 19,
3466.
(12) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311.
(13) (a) Ruba, E.; Mereiter, K.; Schmid, R.; Sapunov, V. N.; Kirchner, K.;
Schottenberger, H.; Calhorda, M. J.; Veiros, L. F. Chem. Eur. J. 2002, 8,
3948. (b) Beckhaus, R.; Sang, J.; Englert, U.; Bo¨hme, U. Organometallics
1996, 15, 4731.
(14) Coates, G. E.; Parkin, C. J. Chem. Soc. 1962, 3220.
(15) Ferrer, M.; Rodr´ıguez, L.; Rossell, O.; Lima, J. C.; Go´mez-Sal, P.; Mart´ın,
A. Organometallics 2004, 23, 5096.
JA0429061
9
J. AM. CHEM. SOC. VOL. 127, NO. 9, 2005 2857