A R T I C L E S
Lee et al.
Scheme 1 a
∼5 Å, and consequently cooperative actions of the two metal
centers are to be expected in some catalysis reactions.
a (i) n-BuLi; (ii) B(OiPr)3; (iii)1,2-dibromobenzene, Pd(PPh3)4 (3 mol
%), Na2CO3; (iv) HCl.
in reduced activity. Even though the â-diketiminato zinc
complexes have a strong tendency to form the associated
dinuclear species in solution, the probability for the complexes
to be present as the relatively less active monomeric species is
increased by reducing the concentration of the catalyst, that is,
by reducing the [Zn]/[monomer] ratio in neat polymerization
conditions. Dissociation to less active monomeric species can
be excluded for bimetallic zinc complexes derived from I and
II, and hence high activity is expected even at a low [Zn]/
[monomer] ratio. By realization of high activity at the low mole
ratio, increase of turnover number (TON) and concomitant
increase of molecular weight by its living polymerization
character are expected. The copolymer shows brittle character.10
Increasing the molecular weight may be one of the tools to
overcome the brittleness.
Coates et al.7-9 have shown that the â-diketiminato zinc
complexes can serve as catalysts for epoxide/CO2 copolymer-
ization. The activity is highly sensitive to the N-aryl ortho
substituents. They attributed this sensitivity to the formation of
an associated bimetallic active species and proposed bimetallic
catalytic action as III.8 If the substituents are too small, such
as methyl, the complex forms a tightly bound bimetallic
complex, which is not active. If the substituents are too large,
the complex cannot form the bimetallic species and this results
Results and Discussion
Synthesis and Characterization. Key building blocks for
constructing compounds I and II are the 4,4′′-diamino-o-
terphenyl derivatives bearing alkyl substituents at the 3, 5, 3′′,
and 5′′ positions, for which the synthetic route is shown in
Scheme 1. N-Diphenylmethylene-2,6-dialkyl-4-bromoanilines
1-3 are prepared in 50-g scale by the tetraethyl orthosilicate-
mediated Schiff base condensation of benzophenone with the
corresponding 2,6-dialkyl-4-bromoanilines.11 The diphenylketimine
functional group is stable to lithiation conditions [n-BuLi,
tetrahydrofuran (THF), -78 °C]12 and hence the bromo
compounds 1-3 can be converted to boronic acids 4-6 by the
conventional method, in good yields (82-87%). Suzuki coupling
reactions of the boronic acids with 1,2-dibromobenzene and
subsequent hydrolysis of the diphenylketimine group under
acidic conditions affords blue fluorescent diamino compounds
7-9 in 82-87% yields. The synthetic method is so straight-
forward that 7 can be synthesized in 7-g scale without any
chromatographic purification procedure. Since various Schiff
base metal complexes of bulky 2,6-diisopropylaniline have been
developed as precursors for olefin polymerization catalysts,13
compounds 7-9 may be used as building blocks to construct
such bimetallic complexes.
(4) (a) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. ReV. 2002, 102,
3031. (b) Singh, S.; Kumar, S. S.; Chandrasekhar, V.; Ahn, H.-J.; Biadene,
M.; Roesky, H. W.; Hosmane, N. S.; Noltemeyer, M.; Schmidt, H.-G.
Angew. Chem., Int. Ed. 2004, 43, 4940. (c) Zhu, H.; Chai, J.; Ma, Q.; Jancik,
V.; Roesky, H. W.; Fan, H.; Herbst-Irmer, R. J. Am. Chem. Soc. 2004,
126, 10194. (d) Basuli, F.; Bailey, B. C.; Brown, D.; Tomaszewski, J.;
Huffman, J. C.; Baik, M.-H., Mindiola, D. J. J. Am. Chem. Soc. 2004,
126, 10506. (e) Kogut, E.; Zeller, A.; Warren, T. H.; Strassner, T. J. Am.
Chem. Soc. 2004, 126, 11984. (f) Zhu, H.; Chai, J.; Chandrasekhar, V.;
Roesky, H. W.; Magull, J.; Vidovic, D.; Schmidt, H.-G.; Noltemeyer, M.;
Power, P. P.; Merrill, W. A J. Am. Chem. Soc. 2004, 126, 9472. (g) Basuli,
F.; Bailey, B. C.; Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem.
Soc. 2004, 126, 1924. (h) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem.
Soc. 2004, 126, 4798. (i) Knight, L. K.; Piers, W. E.; Fleurat-Lessard, P.;
Parvez, M.; McDonald, R. Organometallics 2004, 23, 2087. (j) Peng, Y.;
Fan, H.; Zhu, H.; Roesky, H. W.; Magull, J.; Hughes, C. E. Angew. Chem.,
Int. Ed. 2004, 43, 3443. (k) Basuli, F.; Kilgore, U. J.; Hu, X.; Meyer, K.;
Pink, M.; Huffman, J. C.; Mindiola. D. J. Angew. Chem., Int. Ed. 2004,
43, 3156. (l) Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Chem.
Commun. 2004, 764. (m) Vela, J.; Stoian, S.; Flaschenriem, C. J.; Munck,
E.; Holland, P. L. J. Am. Chem. Soc. 2004, 126, 4522. (n) Laitar, D. S.;
Mathison, C. J. N.; Davis, W. M.; Sadighi, J. P. Inorg. Chem. 2003, 42,
7354.
(5) Lee, S. Y.; Na, S. J.; Kwon, H. Y.; Lee, B. Y.; Kang, S. O. Organometallics
2004, 23, 5382.
(6) (a) Sessler, J. L.; Seidel. D. Angew. Chem., Int. Ed. 2003, 42, 5134. (b)
Miranda, C.; Escarti, F.; Lamarque, L.; Yunta, M. J. R.; Navarro, P.; Garcia-
Espana, E.; Jimeno, M. L. J. Am. Chem. Soc. 2004, 126, 823. (c) Chang,
S.-Y.; Kim, H. S.; Chang, K.-J.; Jeong, K.-S. Org. Lett. 2004, 6, 181. (d)
Evans, L. S.; Gale, P. A. Angew. Chem., Int. Ed. 2004, 43, 1286. (e)
Yamaguchi, Y.; Kobayashi, S.; Miyamura, S.; Okamoto, Y.; Wakamiya,
T.; Matsubara, Y.; Yoshida, Z.-i. Angew. Chem., Int. Ed. 2004, 43, 366.
(f) Wang, M.-X.; Zhang, X.-H.; Zheng, Q.-U. Angew. Chem., Int. Ed. 2004,
43, 838. (g) Sessler, J. L.; Katayev, E.; Pantos, G. D.; Ustynyuk, Y. A.
Chem. Commun. 2004, 1276. (h) Boiocchi, M.; Bonizzoni, M.; Fabbrizzi,
L.; Piovani, G.; Taglietti, A. Angew. Chem., Int. Ed. 2004, 43, 3847. (i)
Fabbrizzi, L.; Foti, F.; Patroni, S.; Pallavicini, P.; Taglietti, A. Angew.
Chem., Int. Ed. 2004, 43, 5073, (j) Zhang, W.; Moore, J. S. J. Am. Chem.
Soc. 2004, 126, 12796. (k) Shimizu, S.; Anand, V. G.; Taniguchi, R.;
Furukawa, K.; Kato, T.; Yokoyama, T.; Osuka, A. J. Am. Chem. Soc. 2004,
126, 12280. (l) Sarri, P.; Venturi, F.; Cuda, F.; Roelens, S. J. Org. Chem.
2004, 69, 3654. (m) Angelovski, G.; Costisella, B.; Kolaric, B.; Engelhard,
M.; Eilbracht, P. J. Org. Chem. 2004, 69, 5290. (n) Leonard, M. S.; Carroll,
P. J.; Joullie, M. M. J. Org. Chem. 2004, 69, 2526. (o) Evans, L. S.; Gale,
P. A. Chem. Commun. 2004, 1286.
Reaction of 7-9 with excess 2,4-pentanedione affords the
desired â-ketoamines, but various attempts to construct com-
9
3032 J. AM. CHEM. SOC. VOL. 127, NO. 9, 2005