Communications
[3] a) A. D. Rodrꢀguez, Y.-P. Shi, Tetrahedron 2000, 56, 9015 – 9023;
b) A. D. Rodrꢀguez, C. Ramꢀrez, J. Nat. Prod. 2001, 2, 507 – 510.
[4] a) D. C. Harrowven, M. J. Tyte, Tetrahedron Lett. 2001, 42, 8709 –
8711; b) J. H. Chaplin, A. J. Edwards, B. L. Flynn, Org. Biomol.
Chem. 2003, 1, 1842 – 1844.
[5] a) K. C. Nicolaou, G. Vassilikogiannakis, W. Mꢁgerlein, R.
Kranich, Angew. Chem. 2001, 113, 2543 – 2547; Angew. Chem.
Int. Ed. 2001, 40, 2482 – 2486; b) K. C. Nicolaou, G. Vassiliko-
giannakis, W. Mꢁgerlein, R. Kranich, Chem. Eur. J. 2001, 7,
5359 – 5371.
[6] A. I. Kim, S. D. Rychnovsky, Angew. Chem. 2003, 115, 1305 –
1308; Angew. Chem. Int. Ed. 2003, 42, 1267 – 1270.
[7] N. Waizumi, A. R. Stankovic, V. H. Rawal, J. Am. Chem. Soc.
2003, 125, 13022 – 13023.
[8] a) J. O. Karlsson, N. V. Nguyen, L. D. Foland, H. W. Moore, J.
Am. Chem. Soc. 1985, 107, 3392 – 3393; b) S. T. Perri, H. J. Dyke,
H. W. Moore, J. Org. Chem. 1989, 54, 2032 – 2034; c) A. Enhsen,
K. Karabelas, J. M. Heerding, H. W. Moore, J. Org. Chem. 1990,
55, 1177 – 1185.
[9] a) P. Walls, J. Padilla, P. Joseph-Nathan, F. Giral, J. Romo,
Tetrahedron Lett. 1965, 1577 – 1582; b) P. Joseph-Nathan, V.
Mendoza, E. Garcia, Tetrahedron 1977, 33, 1573 – 1576; c) P.
Joseph-Nathan, M. E. Garibay, R. L. Santillan, J. Org. Chem.
1987, 52, 759 – 763; d) T. A. Engler, C. M. Scheibe, R. Iyengar, J.
Org. Chem. 1997, 62, 8274 – 8275.
[10] a) H. C. Brown, P. V. Ramachandran, J. Organomet. Chem. 1995,
500, 1 – 19; b) D. S. Matteson, Synthesis 1986, 973 – 985.
[11] a) J. B. Baudin, G. Hareau, S. A. Julia, O. Ruel, Tetrahedron Lett.
1991, 32, 1175 – 1178; b) J. B. Baudin, G. Hareau, S. A. Julia, O.
Ruel, Bull. Soc. Chim. Fr. 1993, 130, 336 – 357; c) J. B. Baudin, G.
Hareau, S. A. Julia, R. Lorne, O. Ruel, Bull. Soc. Chim. Fr. 1993,
130, 856 – 878.
Scheme 2. Total syntheses of (À)-colombiasin A (1) and (À)-elisapter-
osin B (2) starting with 14.
tionally or in the microwave oven, induced an intramolecular
Diels–Alder cycloaddition to (À)-colombiasin A tert-butyl
ether 17.[4–6] Attempts to effect removal of the protective
group with TiCl4 succeeded in that task,[16] but also led to
À
Markovnikov addition of HCl across the sensitive C10 C11
double bond.[5] Deprotection with diethyl ether–trifluorobor-
ane however, proceeded cleanly to complete a total synthesis
of (À)-colombiasin A (1). Notably, exposing quinone 18 to
diethyl ether–trifluoroborane induced both deprotection of
the tert-butyl ether and an intramolecular [5+2] cycloaddition
to give (À)-elisapterosin B (2);[6] our synthetic samples of 1
and 2 exhibit physical and spectral characteristics identical to
those reported for the natural products.[1,2]
[12] a) N. D. Smith, P. J. Kocienski, S. D. A. Street, Synthesis 1996,
652 – 666; b) P. R. Blakemore, P. J. Kocienski, A. Morley, K.
Muir, J. Chem. Soc. Perkin Trans. 1 1999, 955 – 968; c) R.
Bellingham, K. Jarowicki, P. Kocienski, V. Martin, Synthesis
1996, 285 – 296.
[13] M. W. Reed, D. J. Pollart, S. T. Perri, L. D. Foland, H. W. Moore,
J. Org. Chem. 1988, 53, 2477 – 2482.
[14] A. R. Chamberlin, S. H. Bloom, Org. React. 1990, 39, 1 – 83.
[15] H. Berner, H. Vyplel, G. Schulz, G. Fischer, Monatsh. Chem.
1985, 116, 1165 – 1176.
[16] R. H. Schlessinger, R. A. Nugent, J. Am. Chem. Soc. 1982, 104,
1116 – 1118.
In conclusion, stereocontrolled syntheses of (À)-colom-
biasin A (1) and (À)-elisapterosin B (2) have been achieved,
in twelve and eleven steps respectively from (À)-dihydrocar-
vone (3). The problematic C7 stereocenter was established by
hydroboration with ((À)-ipc)2BH, and the use of a tert-butyl
protective group ensured that deprotection could be accom-
[17] G. Zanoni, M. Franzini, Angew. Chem. 2004, 116, 4942 – 4946;
Angew. Chem. Int. Ed. 2004, 43, 4837 – 4841
À
plished in high yield without disruption of the sensitive C10
C11 double bond.[5] A distinctive feature of our approach is
the use of a Moore rearrangement to set up intramolecular
[4+2] and [5+2] cycloaddition reactions, leading to (À)-
colombiasin A (1) and (À)-elisapterosin B (2) respectively.
Studies are underway to further develop and improve the
in situ Shapiro reaction and to apply the “reagent-free”
rearrangement sequence in syntheses of related natural
products such as elisapterosins A and D.[2,3,17]
Received: October 11, 2004
Keywords: cycloaddition · diterpenes · marine natural products ·
.
rearrangement · total synthesis
[1] A. D. Rodrꢀguez, C. Ramꢀrez, Org. Lett. 2000, 2, 507 – 510.
[2] A. D. Rodrꢀguez, C. Ramꢀrez, I. I. Rodrꢀguez, C. L. Barnes, J.
Org. Chem. 2000, 65, 1390 – 1398.
1222
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1221 –1222