C O M M U N I C A T I O N S
methoxyphenylthio adduct corresponding to 11 (PDF). This material
reported; thus, the absolute configuration of stephacidin B remains
unknown at this time.
Our preliminary studies leave little doubt that 1 and 2 are readily
interconverted in solution. For example, concentration of an
acetonitrile-water solution of pure synthetic stephacidin B (1) at
38 °C afforded a 2:1 mixture of 2 and 1, as well as unidentified
decomposition products. Also, whereas solutions of pure 1 in 50%
DMSO-d6-CD3CN appeared to be stable for at least 48 h at 23
°C,21 addition of powdered 3 Å molecular sieves led to partial
retrodimerization, giving a 2:1 mixture of 1 and 2 within 1 h at 23
°C. We also observed partial transformation of 1 to form 2 upon
exposure to silica gel (2D TLC analysis). From the data thus far,
it is clear that (-)-2 and (+)-1 readily interconvert under mild
conditions. This suggests that it is possible that the observed
biological activity of stephacidin B may be attributable to 2 formed
from 1 in vivo. In theory, the converse may be true, though this
seems less likely, simply upon consideration of concentration
effects.22
Finally, we have observed that solutions of 2 in pure methanol-
d4 rapidly (<10 min, 23 °C) form the diastereomeric products of
1,5-addition of methanol-d4 (eq 2). The ratio of diastereomeric
methanol-d4 adducts was ∼15:1 (stereochemistry not assigned). The
ratio of these diastereomeric adducts combined to 2 remaining in
solution suggests an equilibrium constant of 7.7 at 23 °C, although
this value must be regarded as tentative for we have not yet
conducted the experiments to establish that a true equilibrium exists
(the solution decomposed upon concentration). The value 7.7 is
somewhat larger than the equilibrium constant we had measured
for the model unsaturated nitrone previously prepared (K ) 2, 23
°C; the rate of methanol-d4 addition was also faster: t1/2 , 10 min
at 23 °C for 2 vs t1/2 ) 5 h at 23 °C in the model system),5 but
these differences are not surprising given the structural dissimilari-
ties of the two systems.
References
(1) (a) Qian-Cutrone, J.; Krampitz, K. D.; Shu, Y.; Chang, L.; Lowe, S. E.
Stephacidin Antitumor Antibiotics. U.S. Patent 6,291,461, 2001. (b) Qian-
Cutrone, J.; Huang, S.; Shu, Y.; Vyas, D.; Fairchild, C.; Menendez, A.;
Krampitz, K.; Dalterio, R.; Klohr, S. E.; Gao, Q. J. Am. Chem. Soc. 2002,
124, 14556.
(2) For reviews of prenylated indole alkaloids from fungi, see: (a) Williams,
R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127. (b) Stocking, E. M.;
Williams, R. M. Angew. Chem., Int. Ed. 2003, 42, 3078.
(3) Fenical, W.; Jensen, P. R.; Cheng, X. C. Avrainvillamide, a Cytotoxic
Marine Natural Product, and Derivatives thereof. U.S. Patent 6,066,635,
2000.
(4) Sugie, Y.; Hirai, H.; Inagaki, T.; Ishiguro, M.; Kim, Y.; Kojima, Y.;
Sakakibara, T.; Sakemi, S.; Sugiura, A.; Suzuki, Y.; Brennan, L.; Duignan,
J.; Huang, L. H.; Sutcliffe, J.; Kojima, N. J. Antibiot. 2001, 54, 911.
(5) Myers, A. G.; Herzon, S. B. J. Am. Chem. Soc. 2003, 125, 12080.
(6) Independently proposed: Nussbaum, F. Angew. Chem., Int. Ed. 2003, 42,
3068.
(7) For syntheses of alkaloids structurally related to 2, see: (a) (-)-
Brevianamide B: Williams, R. M.; Glinka, T.; Kwast, E.; Coffman, H.;
Stille, J. K. J. Am. Chem. Soc. 1990, 112, 808. (b) (+)-Paraherquamide
B: Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem.
Soc. 1996, 118, 557. (c) (()-VM55599: Stocking, E. M.; Sanz-Cervera,
J. F.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 1675. (d)
(-)-VM55599: Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc.
2002, 124, 2556. (e) Paraherquamide A: Williams, R. M.; Cao, J.;
Tsujishima, H.; Cox, R. J. J. Am. Chem. Soc. 2003, 125, 12172. (f)
Stephacidin A: Baran, P. S.; Guerrero, C. A.; Ambhaikar, N. B.;
Hafensteiner, B. D. Angew. Chem., Int. Ed. 2004, 44, 606.
(8) Nelson, L. A. K.; Shaw, A. C.; Abrams, S. R. Tetrahedron 1991, 47,
3259.
(9) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011.
(10) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed.
2002, 41, 993.
(11) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109,
5551. (b) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986.
(12) The absolute stereochemistry of 4 was determined by the modified Mosher
method and is consistent with the established transition-state model for
the oxazaborolidine-mediated reduction.11b (a) Dale, J. A.; Mosher, H. S.
J. Am. Chem. Soc. 1973, 95, 512. (b) Ohtani, I.; Kusumi, T.; Kashman,
Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
(13) Tae, J.; Paquette, L. A. Can. J. Chem. 2000, 78, 689.
(14) (a) Ghaffar, T.; Parkins, A. W. Tetrahedron Lett. 1995, 36, 8657. (b)
Ghaffar, T.; Parkins, A. W. J. Mol. Catal. A 2000, 160, 249.
(15) Schaefew, F. C. In The Chemistry of the Cyano Group; Rappoport, Z.,
Ed.; The Chemistry of Functional Groups; Wiley and Sons: New York,
1970; p 239.
(16) (a) Jackson, L. V.; Walton, J. C. Chem. Commun. 2000, 2327. (b) Bella,
A. F.; Jackson, L. V.; Walton, J. C. Org. Biomol. Chem. 2004, 2, 421.
(17) Prepared from the aryl iodide 17 by the method of Sapountzis and
Knochel: Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41,
1610. See Supporting Information for details.
(18) Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W. Org. Lett.
2003, 5, 2497.
(19) Iodide 17 was prepared in two steps following a route previously developed
by others for the synthesis of similarly substituted chromene derivatives.
(a) Elomri, A.; Michel, S.; Tillequin, F.; Koch, M. Heterocycles 1992,
34, 799. (b) Cox, R. J.; Williams, R. M. Tetrahedron Lett. 2002, 43, 2149.
(c) See also, ref 7f. An alternative preparation of 17 has been reported:
(d) Sun, H.; Qing, F.; Chen, X. Synthesis 1997, 1249.
Acknowledgment. Financial support from the National Institutes
of Health is gratefully acknowledged. S.B.H. acknowledges a
National Science Foundation predoctoral fellowship. We thank Dr.
Matthew Zajac for his assistance in the preparation of 3, Dr. Andrew
Haidle for X-ray analysis, and Dr. Yutaka Sugie for kindly
providing NMR spectra of CJ-17,665.
(20) Knochel, P.; Rao, C. J. Tetrahedron 1993, 49, 29.
(21) The merits of the DMSO-d6-CD3CN solvent system in stabilizing
stephacidin B were discussed in ref 1b.
(22) Our results also leave open the possibility that stephacidin B is an artifact
of the isolation of 2; the converse may be true instead, though this would
appear to be less likely.
Supporting Information Available: Detailed experimental pro-
cedures and tabulated spectroscopic data (1H and 13C NMR, FT-IR,
and HRMS) for all new compounds, X-ray analysis of the p-
JA0510616
9
5344 J. AM. CHEM. SOC. VOL. 127, NO. 15, 2005