S. Thust, B. Koksch / Tetrahedron Letters 45 (2004) 1163–1165
1165
amides were used as nucleophiles. The application of
amino acids19 as nucleophiles will open up the possi-
bility of incorporating a variety of fluorinated residues
into biologically relevant peptides by enzymatic frag-
ment condensation.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft
(Innovationskolleg ÔChemical Signal-Biological AnswerÕ
of the University of Leipzig) for financial support.
Figure 2. Influence of the absolute configuration of (aTfm)Ala on the
efficiency of CPY-catalyzed peptide synthesis. Reagents and condi-
tions: 0.1 M HEPES buffer, 0.2 M NaCl, 0.02 M CaCl2, 40% DMSO,
pH 8.0, 37 ꢁC; [acyl donor]: 4 mM, [acyl acceptor]: 40 mM, [CPY]:
3.0 · 10ꢀ7–1.6 · 10ꢀ6 M, all errors are less than 5%.
References and notes
1. Tang, Y.; Ghirlanda, G.; Vaidehi, N.; Kua, J.; Mainz, D.
T.; Goddard, W. A., III; DeGrado, W. F.; Tirell, D. A.
Biochemistry 2001, 40, 2790–2796.
2. Tang, Y.; Tirell, D. A. J. Am. Chem. Soc. 2001, 123,
11089–11090.
3. Bilgicer, B.; Xing, X.; Kumar, K. J. Am. Chem. Soc. 2001,
123, 11815–11816.
4. Koksch, B.; Sewald, N.; Jakubke, H.-D.; Burger, K. In
Biomedical Frontiers of Fluorine Chemistry; Ojima, I.,
McCarthy, J. R., Welch, J. T., Eds.; ACS Symposium
Series 639; American Chemical Society: Washington, DC,
1996; pp 42–58.
5. Entress, R. M. H.; Dancer, R. J.; OÕBrien, D. P.; Try, A.
C.; Cooper, M. A.; Williams, D. H. Chem. Biol. 1998, 5,
329–337.
6. Ulrich, A. S. In Encyclopedia of Spectroscopy and Spec-
trometry; Lindon, J., Tranter, G., Holmes, J., Eds.;
Academic: 2000; p 813.
7. Schechter, I.; Berger, A. C. Biochem. Biophys. Res.
Commun. 1967, 27, 157–162.
8. Bordusa, F.; Dahl, C.; Jakubke, H.-D.; Burger, K.;
Koksch, B. Tetrahedron: Asymmetry 1999, 10, 307–313.
9. Koksch, B.; Sewald, N.; Burger, K.; Jakubke, H.-D.
Amino Acids 1996, 11, 425–434.
10. Jakubke, H.-D. J. Chin. Chem. Soc. 1994, 41, 355–370.
11. Burger, K.; Muetze, K.; Hollweck, W.; Koksch, B.; Kuhl,
P.; Jakubke, H.-D.; Riede, J.; Schier, A. J. Prakt. Chem.
1993, 335, 321–331.
12. Thust, S.; Koksch, B. J. Org. Chem. 2003, 68, 2290–2296.
13. Kallwass, H. K. W.; Yee, C.; Blythe, T. A.; McNabb, T.
J.; Rogers, E. E.; Shames, S. L. Bioorg. Med. Chem. 1994,
2, 557–566.
14. Bai, Y.; Hayashi, R.; Hata, T. J. Biochem. (Tokyo) 1975,
78, 617–626.
15. Breddam, K. Carlsberg Res. Commun. 1984, 49, 535–554.
16. Breddam, K. Carlsberg Res. Commun. 1986, 51, 83–128.
17. Endrizzi, J. A.; Breddam, K.; Remington, S. J. Biochem.
1994, 33, 11106–11120.
18. Mortensen, U. H.; Stennicke, H. R.; Raaschou, M.;
Breddam, K. J. Am. Chem. Soc. 1994, 116, 34–41.
19. Eckstein, H.; Renner, H.-J. Peptides. In Proceedings of the
24th European Peptide Symposium, Edinburgh, 1996;
Mayflower Scientific: Kingswinford, UK, 1998; pp 355–
356.
NH2, respectively, are much higher now than observed
when reacting each of the nucleophiles with Z-Aib-OMe
(Fig. 1). These results imply that substitution of a
methyl group for a Tfm group at the Ca-atom of Aib
can result, depending on the absolute configuration, in
an improved binding of the substrate within the active
site of CPY. Remarkably, in the case of the a-Tfm
analogues, reaction of the diastereomer possessing the
fluorinated, bulkier side chain in the same position as it
would be for the side chain in the case of a natural
amino acid results in a lower peptide yield. Surprisingly,
CPY accepts the bulky Tfm group within the binding
site for the a-proton. The assumption can be made that
the a-Dfm substituted Ala derivative will show a similar
reaction behavior, however, this has to be further
investigated.
In conclusion, we present here the first example of a
direct enzymatic coupling of two different, sterically
demanding Ca-fluoroalkyl amino acids to amino acid
nucleophiles. N-Protected Ala methyl ester derivatives
bearing a methyl-, difluoromethyl-, or trifluoromethyl
group, respectively, instead of the a-proton were
accepted as substrates by CPY and could, therefore, be
coupled directly to various nucleophiles. Peptide yields
between 20% and 75% were obtained depending on the
nucleophilic amino acid derivative and the enantiomer
of the fluoroalkyl amino acid. To our knowledge, this is
the first time that sterically demanding Ca-dialkylated
amino acids have been coupled as substrates directly
with amino acid nucleophiles without any further acti-
vation of the electrophilic substrate and without any
medium or enzyme engineering. The synthetic strategy
introduced here, extends the scope of methods available
for site-specific peptide and protein modification by
fluorinated amino acids using a simple and environ-
mentally attractive route. In this study, amino acid