C O M M U N I C A T I O N S
X-ray crystallography to establish that the C-5 methyl substituent
was pseudoequatorial.14 We also prepared this salt9 and compared
coupling constant data obtained for the pseudoaxial C-5 methine
In conclusion, we have proven that a C-4 alkoxy substituent
adopts a pseudoaxial orientation in the ground-state structure of
dioxocarbenium ion 5 in solution and in the solid state. This result
supports our earlier hypothesis that conformer 2 is the ground-
state structure of the intermediate leading to highly trans-selective
reactions of C-4 alkoxy-substituted tetrahydropyran acetates.2,4 The
origin of this preference likely derives from through-space elec-
trostatic effects as evidenced by computational, spectroscopic, and
crystallographic data.
Acknowledgment. This research was supported by the National
Institutes of Health, National Institute of General Medical Sciences
(GM-61066). K.A.W. thanks Johnson & Johnson and Merck
Research Laboratories for awards to support research. Dr. John
Greaves and Dr. John Mudd are acknowledged for mass spectro-
metric data.
1
proton of 10 to the C-4 methine proton of 6 using high-field H
NMR spectroscopy (500 MHz, CD2Cl2). Two large coupling
constants corresponding to the two vicinal diaxial relationships
involving Hb were present in the solution conformer of 6. These
coupling constants suggest that the methyl substituent is pseu-
doequatorial, in direct contrast to the preferred pseudoaxial orienta-
tion of the C-4 alkoxy substituent in cation 5.
Supporting Information Available: Experimental procedures,
characterization data for new compounds, spectral data for selected
compounds (PDF), and X-ray diffraction data (CIF). This material is
We believe that the orientation of the C-4 alkoxy substituent in
5 is a result of electrostatic effects,4 not anchimeric assistance.15
Even though it provides the same selectivity hypothesized to arise
from through-space cation stabilization, the attraction between the
C-4 substituent and C-1 in 5 does not necessitate the formation of
a covalent bond. Anchimeric assistance would afford bridged
bicyclic cation 11. Examination of the X-ray structure of 5 reveals
that 3.301 Å separates C-1 and O-3. Within a structure such as 11,
the median carbon-oxygen bond length in the trivalent oxonium
ion comprising C-1, C-4, C-8, and O-3 should be approximately
1.5 Å.16 In addition, oxonium ion 11 is not an energy minimum
according to computational methods.8 In combination with the
X-ray, spectroscopic, and computational data we present for
dioxocarbenium ion 5, the selectivity trend we observed within a
series of nucleophilic substitution reactions of C-4 halogen-
substituted acetates (trans selectivity decreases down the series F
> Br > Cl > I)2a is most consistent with conformational stability
derived from through-space electrostatic interactions present in the
intermediate, oxocarbenium ion 2.4
References
(1) Jensen, H. H.; Bols, M. Org. Lett. 2003, 5, 3419-3421 and references
therein.
(2) (a) Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel,
K. A. J. Am. Chem. Soc. 2003, 125, 15521-15528. (b) Romero, J. A. C.;
Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2000, 122, 168-169.
(3) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1994, 116, 7915-7916.
(4) (a) Miljkovic´, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org.
Chem. 1997, 62, 7597-7604. (b) Woods, R. J.; Andrews, C. W.; Bowen,
J. P. J. Am. Chem. Soc. 1992, 114, 859-864 and references therein.
(5) Dudley, T. J.; Smoliakova, I. P.; Hoffmann, M. R. J. Org. Chem. 1999,
64, 1247-1253.
(6) (a) Suga, S.; Suzuki, S.; Yamamoto, A.; Yoshida, J. J. Am. Chem. Soc.
2000, 122, 10244-10245. (b) Prakash, G. K. S.; Rasul, G.; Liang, G.;
Olah, G. A. J. Phys. Chem. 1996, 100, 15805-15809. (c) Amyes, T. L.;
Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 7888-7900. (d) Olah, G. A.;
Dunne, K.; Mo, Y. K.; Szilagyi, P. J. Am. Chem. Soc. 1972, 94, 4200-
4205.
(7) (a) McClelland, R. A.; Steenken, S. J. Am. Chem. Soc. 1988, 110, 5860-
5866. (b) Pindur, U.; Mu¨ller, J.; Flo, C.; Witzel, H. Chem. Soc. ReV. 1987,
16, 75-87.
(8) Details of calculations are provided within the Supporting Information.
(9) Deslongchamps, P.; Cheˆnevert, R.; Taillefer, R. J.; Moreau, C.; Saunders,
J. K. Can. J. Chem. 1975, 53, 1601-1615.
(10) Attempts were made to compare the allylation of dioxocarbenium ion 5
with data reported for similar reactions of acetates (ref 2). Consistent with
our inability to observe alkylation at C-1, soft nucleophiles are known to
attack 1-alkoxytetrahydropyrylium ions preferentially at C-5, with ring
opening, or at C-8 by dealkylation: Beaulieu, N.; Deslongchamps, P. Can.
J. Chem. 1980, 58, 164-167.
(11) The observed multiplicity derives from coupling to four vicinal protons
and remote coupling to the C-2 equatorial proton. Computational and
spectroscopic data for a C-4 methoxy analogue of 5, which exhibits a
similar conformational preference, appear in the Supporting Information.
(12) Kozikowski, A. P.; Ghosh, A. K. J. Org. Chem. 1985, 50, 3017-3019.
(13) The X-ray structure of dioxocarbenium ion 9 is disordered, and only one
of the two forms is shown for clarity. Data and a plot of the composite
structure with a rationale for its formation (ref 10) appear in the Supporting
Information.
Additional stability in dioxocarbenium ion 5 may originate from
the gauche relationship between vicinal electronegative atoms O-1
and the benzyloxy substituent. This coincidence could partially
explain the observed conformational preference, but it is not likely
the sole determinant. The gauche effect17 can be substantial in
charged systems, such as protonated 2-fluoroethanol,18 and may
influence the conformational preferences we and others observe in
tetrahydropyrans.2,19 It cannot, however, explain the predilection
for a C-4 or a C-5 alkoxy substituent in an eight-membered ring
oxocarbenium ion to be axial.20 For this reason, the electrostatic
stabilization hypothesis4 remains the most plausible explanation for
the enhanced stability of oxocarbenium ion conformers possessing
axial electronegative substituents.
The preferred axial orientation of remote electronegative sub-
stituents in rings possessing electron-deficient carbon atoms seems
to be a general phenomenon. In neutral systems, such as δ-lac-
tones,21,22 δ-lactams,23 cyclohexanones,24,25 and even 3-acetoxy
tetrahydropyran,19 remote heteroatom substituents prefer axial
orientations. The axial preference is normally small, but the stability
gained by positioning the substituent closer to the electron-deficient
carbon atom overwhelms any steric penalty that this spatial
arrangement may incur.2
(14) Childs, R. F.; Kostyk, M. D.; Lock, C. J. L.; Mahendran, M. Can. J.
Chem. 1991, 69, 2024-2032.
(15) Anchimeric assistance can control the stereoselectivity of reactions: (a)
Durham, T. B.; Roush, W. R. Org. Lett. 2003, 5, 1875-1878 and
references therein. (b) Nukada, T.; Be´rces, A.; Whitfield, D. M. Carbohydr.
Res. 2002, 337, 765-774.
(16) Watkins, M. I.; Ip, W. M.; Olah, G. A.; Bau, R. J. Am. Chem. Soc. 1982,
104, 2365-2372.
(17) Jaffe, R. L.; Smith, G. D.; Yoon, D. Y. J. Phys. Chem. 1993, 97, 12745-
12751.
(18) Briggs, C. R. S.; Allen, M. J.; O’Hagan, D.; Tozer, D. J.; Slawin, A. M.
Z.; Goeta, A. E.; Howard, J. A. K. Org. Biomol. Chem. 2004, 2, 732-
740 and references therein.
(19) Bernet, B.; Piantini, U.; Vasella, A. Carbohydr. Res. 1990, 204, 11-25.
(20) Chamberland, S.; Woerpel, K. A. Org. Lett. 2004, 6, 4739-4741.
(21) Branda¨nge, S.; Fa¨rnba¨ck, M.; Leijonmarck, H.; Sundin, A. J. Am. Chem.
Soc. 2003, 125, 11942-11955.
(22) Morimoto, Y.; Shirahama, H. Tetrahedron 1997, 53, 2013-2024.
(23) Boudreault, N.; Ball, R. G.; Bayly, C.; Bernstein, M. A.; Leblanc, Y.
Tetrahedron 1994, 50, 7947-7956.
(24) Baldry, K. W.; Gordon, M. H.; Hafter, R.; Robinson, M. J. T. Tetrahedron
1976, 32, 2589-2594.
(25) Nagao, Y.; Goto, M.; Ochiai, M.; Shiro, M. Chem. Lett. 1990, 1503-1506.
JA050830I
9
J. AM. CHEM. SOC. VOL. 127, NO. 15, 2005 5323