Chemistry Letters Vol.34, No.4 (2005)
583
6
7
8
N. Nakata, R. Izumi, V. Ya. Lee, M. Ichinohe, and A.
Sekiguchi, J. Am. Chem. Soc., 126, 5058 (2004).
W. Schacht and D. Kaufmann, Chem. Ber., 120, 1331
(1987).
tBu2MeSi
tBu2MeSi
δ− δ+
E
B
Mes
1 or 2
MesBCl2
5: (E = Si), 6: (E = Ge)
Dilithiosilane 1 (0.10 mmol) was reacted with dichloro-
(2,4,6-trimethylphenyl)borane (15 mg, 0.072 mmol) in dry
THF (1.0 mL) for 15 min at room temperature to form a pale
yellow solution. After removal of the solvent in vacuo, the
reaction mixture was separated by HPLC equipped with a re-
verse phase ODS column (eluent: MeOH:tBuOMe = 1:1) to
afford colorless crystals of 3 (23 mg, 58%); mp 199–202 ꢂC
(dec.), 1H NMR (C6D6) ꢁ 0.31 (s, 6 H), 1.11 (s, 18 H), 1.18
(s, 18H), 1.19 (m, 2H), 1.61 (m, 2H), 1.83 (m, 2H), 2.13 (s,
3H), 2.44 (s, 6H), 4.51 (m, 2H), 6.74 (s, 2H); 13C NMR
(C6D6) ꢁ ꢁ2:0, 11.1, 21.2, 22.8, 23.7, 24.8, 29.8, 31.0,
31.2, 67.3, 128.3, 137.7, 140.1; 29Si NMR (C6D6) ꢁ ꢁ63:0,
12.3. The ipso carbon atom in the 13C NMR spectrum was
not observed, probably due to coupling with the 11B
nucleus, leadingꢂto broadening of the peak.
THF
tBu2MeSi
tBu2MeSi
tBu2MeSi
Mes
E
B
Mes
B
3 or 4
E
tBu2MeSi
O
O
Scheme 2.
initial formation of silaborene 5 or germaborene 6 as the key re-
active intermediates, which are stabilized by the coordination of
a THF molecule to the vacant 2pz-orbital on the B atom
(Scheme 2). Because of the different substitution pattern around
the doubly bonded atoms—the electrondonating tBu2MeSi
group on Si (or Ge) atoms and the electronwithdrawing Mes
group on B atoms of intermediates 5 and 6—both >Si=B–
1
9
4: mp 214–215 C (dec.), H NMR (C6D6) ꢁ 0.31 (s, 6 H),
1.10 (s, 18 H), 1.17 (s, 18H), 1.40 (m, 2H), 1.65 (m, 2H),
1.99 (m, 2H), 2.13 (s, 3H), 2.44 (s, 6H), 4.52 (m, 2H), 6.74
(s, 2H); 13C NMR (C6D6) ꢁ ꢁ1:9, 13.2, 21.2, 23.0, 23.7,
25.6, 30.0, 30.8, 30.9, 67.6, 128.3, 137.8, 139.9; 29Si NMR
(C6D6) ꢁ 19.7. The ipso carbon atom in the 13C NMR spec-
trum was not observed.
and >Ge=B– double bonds are greatly polarized: >Eꢁꢁ=B
–
ꢁþ
10 Crystal data for 3: C31H61BOSi3, MW = 544.88, monoclin-
ic, space group P21=c (No. 14), a ¼ 11:3740ð3Þ, b ¼
(E = Si, Ge). Consequently, the nucleophilic Si and Ge atoms
attack the ꢂ-carbons of a coordinated THF molecule accompa-
nied with the cyclic C–O bond cleavage to form finally the sev-
en-membered ring products 3 and 4, respectively (Scheme 2).14
Indeed, the appreciable polarization of the >E=B– bond was
clearly demonstrated by NPA (natural population analysis) cal-
culations on the model compounds, (Me3Si)2E=BPh [E = Si
(7), Ge (8)], which revealed the accommodation of a large part
of the electron density on the Si (ꢁ0:246) and Ge (ꢁ0:335)
atoms, whereas the B atom has a positive charge (+0.286 for
7, +0.295 for 8, respectively).15
18:0810ð9Þ, c ¼ 16:8290ð9Þ A, ꢃ ¼ 103:517ð3Þꢂ, V ¼
ꢀ
ꢀ 3
3365:1ð3Þ A , Z ¼ 4, Dcalc ¼ 1:076 g cmꢁ3
,
R1 ðI >
2ꢄðIÞÞ ¼ 0:0409, wR2 (all data) = 0.1113 for 7535 reflec-
tions and 342 parameters, GOF = 0.968. 4: C31H61-
BGeOSi2, MW = 589.38, monoclinic, space group P21=c
(No. 14), a ¼ 11:4140ð2Þ, b ¼ 18:1010ð6Þ, c ¼ 16:8330ð5Þ
ꢂ
ꢀ
ꢀ 3
A, ꢃ ¼ 103:588ð2Þ , V ¼ 3380:44ð16Þ A , Z ¼ 4, Dcalc
¼
1:158 g cmꢁ3, R1 ðI > 2ꢄðIÞÞ ¼ 0:0318, wR2 (all data) =
0.0851 for 7977 reflections and 342 parameters, GOF =
ꢀ
1.045. Selected bond lengths (A) and angles (deg) for 4:
Ge1–B1 = 2.1647(17), Ge1–Si1 = 2.5001(4), Ge1–Si2 =
2.4914(4), Ge1–C4 = 2.0279(15), B1–O1 = 1.359(2),
This work was supported by a Grant-in-Aid for Scientific
Research (Nos. 147078204, 16205008, 16550028) from the
Ministry of Education, Culture, Sports, Science and Technology
and COE (Center of Excellence) program.
Si1–Ge1–Si2 = 121.375(15),
Si1–Ge1–C4 = 106.57(4),
Si2–Ge1–B1 = 104.56(5), C4–Ge1–B1 = 101.51(6), Ge1–
B1–O1 = 120.06(11), Ge1–B1–C23 = 127.34(11), O1–
B1–C23 = 112.13(13).
References and Notes
1
a) A. Berndt, Angew. Chem., Int. Ed. Engl., 32, 985 (1993).
b) J. J. Eisch, Adv. Organomet. Chem., 39, 355 (1996). c)
P. P. Power, Chem. Rev., 99, 3463 (1999), and references
cited therein.
11 P. Luger, J. Buschmann, and C. Altenhein, Acta Crystallogr.,
C47, 102 (1991).
12 W. Lippert, H. Noth, W. Ponikwar, and T. Seifert, Eur. J.
¨
Inorg. Chem., 1999, 817.
2
3
P. v. R. Schleyer and D. Kost, J. Am. Chem. Soc., 110, 2105
(1988).
a) M. Ichinohe, Y. Arai, A. Sekiguchi, N. Takagi, and S.
Nagase, Organometallics, 20, 4141 (2001). b) A. Sekiguchi,
R. Izumi, V. Ya. Lee, and M. Ichinohe, J. Am. Chem. Soc.,
124, 14822 (2002).
a) A. Sekiguchi, R. Izumi, S. Ihara, M. Ichinohe, and
V. Ya. Lee, Angew. Chem., Int. Ed., 41, 1598 (2002). b) A.
Sekiguchi, R. Izumi, V. Ya. Lee, and M. Ichinohe, Organo-
metallics, 22, 1483 (2003).
V. Ya. Lee and A. Sekiguchi, Organometallics, 23, 2822
(2004).
13 M. Nanjo, K. Matsudo, and K. Mochida, Inorg. Chem. Com-
mun., 6, 1065 (2003).
14 The possibility of the initial formation of R2ELi–BClMes
(THF) (E = Si, Ge) followed by the intramolecular THF
ring-opening to form finally 3 (or 4) seems unfavorable,
since coordination of THF to B atom attached to an anionic
E-center, is unlikely due to the preferential interaction of
anionic center to B empty p-orbital. Instead, ꢃ-elimination
of LiCl would rather take place resulting in the formation
of >E=B– bond.
4
5
15 The calculations were carried out using the Gaussian 98
program at the B3LYP/6-31G(d) level.
Published on the web (Advance View) March 19, 2005; DOI 10.1246/cl.2005.582