5036
A. K. Das et al. / Tetrahedron 61 (2005) 5027–5036
Simard, M.; Roelens, S. J. Am. Chem. Soc. 1995, 117,
7630–7645.
4.2. Single crystal X-ray diffraction study
7. (a) Rowan, I. E.; Notle, R. J. M. Angew. Chem., Int. Ed. 1998,
37, 62–68. (b) Feiters, M. C.; Notle, R. J. M. Adv. Supramol.
Chem. 2000, 6, 41–156. (c) Lehn, J. M. Chem. Eur. J. 2000, 6,
2097–2102. (d) Lightfoot, M. P.; Mair, F. S.; Pritchard, R. G.;
Warren, J. E. Chem. Commun. 1999, 1945–1946. (e) Tobellion,
F. M.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc.
2001, 123, 7740–7741.
For peptides 1–5, intensity data were collected with MoKa
radiation using the MARresearch Image Plate System. For
all peptides, the crystals were positioned at 70 mm from the
Image Plate. Selected details of the structure solutions and
refinements are given in Table 3. 100 frames were measured
at 28 intervals with a counting time of 2 min. Data analyses
were carried out with the XDS program.19 The structures
were solved using direct methods with the Shelx8620
program. For peptide 4, the t-butyl group was disordered,
each methyl group taking up two different sites each refined
with 50% occupancy. For peptide 5 some atoms had high
thermal parameters but no satisfactory disordered model
could be obtained. Apart from disordered atoms, all non-H
atoms were refined with anisotropic thermal parameters.
The hydrogen atoms bonded to nitrogen and carbon were
included in geometric positions and given thermal para-
meters equivalent to 1.2 times those of the atom to which
they were attached. Those bonded to the water molecules in
5 could not be located. The structures were refined on F2
using Shelxl.21 Crystallographic data have been deposited at
the Cambridge Crystallographic Data Centre reference
CCDC 254598-254602 for peptides 1–5.
8. Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier,
B.; Moras, D. Proc. Natl. Acad. Sci. U.S.A. 1987, 84,
2565–2569.
9. (a) Allen, W. E.; Fowler, C. J.; Lynch, V. M.; Sessler, J. L.
Chem. Eur. J. 2001, 7, 721–729. (b) Geib, S. J.; Vicent, C.;
Fan, E.; Hamilton, A. D. Angew. Chem., Int. Ed. Engl. 1993,
32, 119–121.
10. Wang, Z.; Enkelmann, V.; Negri, F.; Mullen, K. Angew.
Chem., Int. Ed. 2004, 43, 1972–1975.
11. (a) Moriuchi, T.; Nomoto, A.; Yoshida, K.; Ogawa, A.; Hirao,
T. J. Am. Chem. Soc. 2001, 123, 68–75. (b) Nomoto, A.;
Moriuchi, T.; Yamazaki, S.; Ogawa, A.; Hirao, T. Chem.
Commun. 1998, 1963–1964.
12. (a) Moriuchi, T.; Nishiyama, M.; Yoshida, K.; Ishikawa, T.;
Hirao, T. Org. Lett. 2001, 3, 1459–1461. (b) Moriuchi, T.;
Nomoto, A.; Yoshida, K.; Ogawa, A.; Hirao, T. J. Am. Chem.
Soc. 2001, 123, 68–75.
Acknowledgements
13. (a) Parthasarathy, R.; Chaturvedi, S.; Go, K. Proc. Natl. Acad. Sci.
U.S.A. 1990, 87, 871–875. (b) Ramasubbu, N.; Parthasarathy, R.
Biopolymers 1989, 28, 1259–1269.
We thank EPSRC and the University of Reading, U.K. for
funds for the Image Plate System. S. Ray thanks the Council
for Scientific and Industrial Research (C.S.I.R), New Delhi,
India for financial assistance. This research is also supported
by a grant from Department of Science and Technology
(DST), India [Project No. SR/S5/OC-29/2003].
14. (a) Haldar, D.; Maji, S. K.; Sheldrick, W. S.; Banerjee, A.
Tetrahedron Lett. 2002, 43, 2653–2656. (b) Haldar, D.; Maji,
S. K.; Drew, M. G. B.; Banerjee, A.; Banerjee, A. Tetrahedron
Lett. 2002, 43, 5465–5468. (c) Maji, S. K.; Banerjee, A.; Drew,
M. G. B.; Haldar, D.; Banerjee, A. Tetrahedron Lett. 2002, 43,
6759–6762. (d) Banerjee, A.; Maji, S. K.; Drew, M. G. B.;
Haldar, D.; Banerjee, A. Tetrahedron Lett. 2003, 44, 699–703.
(e) Haldar, D.; Banerjee, A.; Drew, M. G. B.; Das, A. K.;
Banerjee, A. Chem. Commun. 2003, 1406–1407.
References and notes
15. (a) Banerjee, A.; Maji, S. K.; Drew, M. G. B.; Haldar, D.;
Banerjee, A. Tetrahedron Lett. 2003, 44, 335–339. (b) Maji,
S. K.; Haldar, D.; Drew, M. G. B.; Banerjee, A.; Das, A. K.;
Banerjee, A. Tetrahedron 2004, 60, 3251–3259.
1. Watson, J. D.; Crick, F. C. H. Nature 1953, 171, 737–738.
2. Ramachandran, G. N.; Kartha, G. Nature 1955, 179, 593–595.
3. Franklin, R. E. Nature 1955, 175, 379–381.
16. (a) Karle, I. L.; Balaram, P. Biochemistry 1990, 29,
6747–6756. (b) Sacca, B.; Formaggio, F.; Crisma, M.;
Toniolo, C.; Gennaso, R. Gazz. Chim. Ital. 1997, 127,
495–500. (c) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion,
C. Biopolymers (Pept. Sci.) 2001, 60, 396–419.
4. (a) Goldsbury, C.; Goldie, K.; Pellaud, J.; Seelig, J.; Frey, P.;
Mu¨ller, S. A.; Kister, J.; Cooper, G. J. S.; Aebi, U. J. Struct.
Biol. 2000, 130, 352–362. (b) Arvinte, T.; Cudd, A.; Drake,
A. F. J. Biol. Chem. 1993, 268, 6415–6422. (c) Blanch, E. W.;
Morozova-Roche, L. A.; Cochran, D. A. E.; Doing, A. J.; Hect,
L.; Barron, L. D. J. Mol. Biol. 2000, 301, 553–563. (d) Sadqi,
M.; Herna’ndez, F.; Pan, U. M.; Pe’rez, M.; Schaeberle, M. D.;
Avila, J.; Munoz, V. Biochemistry 2002, 41, 7150–7155.
5. (a) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J. M.
Nature 2000, 407, 720–723. (b) Kolomiets, E.; Berl, V.;
Odrizola, I.; Stadler, A.-M.; Kyritskas; Lehn, J. M. Chem.
Commun. 2003, 2868–2869.
17. Maji, S. K.; Banerjee, R.; Velmurugan, D.; Razak, A.; Fun,
H. K.; Banerjee, A. J. Org. Chem. 2002, 67, 633–639.
18. Karle, I. L.; Banerjee, A.; Bhattacharjya, S.; Balaram, P.
Biopolymers 1996, 38, 515–526.
19. Kabsch, W. J. Appl. Crystallogr. 1988, 21, 916.
20. Sheldrick, G. M. ActaCrystallogr. Sect. A: Fundam. Crystallogr.
1990, 46, 467.
21. Sheldrick, G. M. Program for Crystal Structure Refinement;
¨
University of Gottingen: Germany, 1993.
6. (a) Hanessian, S.; Gomtsyan, A.; Simard, M.; Roelens, S.
J. Am. Chem. Soc. 1994, 116, 4495–4496. (b) Hanessian, S.;