DiastereoselectiVity in â-Mannopyranosylation
this article we examine in greater detail the potential of the
readily cleavable, minimally sterically unintrusive propargyl
ether protecting group and show how, in conjunction with the
correct choice of other protecting groups, it can lead to
considerable enhancements in the stereoselectivity of mannopy-
ranosylation reactions and even the very challenging rham-
nopyranosylations.
core pentasaccharide of the N-linked glycans,13a when coupling
of the 2-O-benzyl-3-O-TBDMS mannosyl donor 2 with pentenyl
glycoside acceptor 1 exhibited poor selectivity (77%, R/â )
1.8:1). In contrast, with the 2-O-TBDMS-3-O-benzyl donor 3,
the selectivity was significantly better (72%, R/â ) 1:3), albeit
still not at the high levels typically experienced with more
standard 2,3-di-O-benzyl protected donors.16
Results and Discussion
The problem of diminished selectivity caused by bulky groups
on O3 was initially encountered in the synthesis of the common
(4) (a) Crich, D.; Vinod, A. U. J. Org. Chem. 2005, 70, 1291-1296. (b)
Crich, D.; Dudkin, V. J. Am. Chem. Soc. 2001, 121, 6819-6825. (c) Crich,
D.; Jayalath, P. J. Org. Chem. 2005, 70, 7252-7259. (d) Crich, D.; Yao,
Q. J. Am. Chem. Soc. 2004, 126, 8232-8236. (e) Crich, D.; Hutton, T. K.;
Banerjee, A.; Jayalath, P.; Picione, J. Tetrahedron: Asymmetry 2005, 16,
105-119. (f) Crich, D.; Vinod, A. U.; Picione, J. J. Org. Chem. 2003, 68,
8453-8458. (g) Crich, D.; Vinod, A. U.; Picione, J.; Wink, D. J. ARKIVOC
2005, Vi, 339-344. (h) Kim, J.-H.; Yang, H.; Boons, G.-J. Angew. Chem.,
Int. Ed. 2005, 44, 947-949. (i) Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-
J. J. Am. Chem. Soc. 2005, 127, 12090-12097. (j) Smoot, J. T.;
Pornsuriyasak, P.; Demchenko, A. V. Angew. Chem., Int. Ed. 2005, 44,
7123-7126. (k) Bowers, S. G.; Coe, D. M.; Boons, G.-J. J. Org. Chem.
1998, 63, 4570-4571. (l) Jiao, H.; Hindsgaul, O. Angew. Chem., Int. Ed.
1999, 38, 346-348. (m) Debenham, J.; Rodebaugh, R.; Fraser-Reid, B.
Liebigs Ann./Recl. 1997, 791-802. (n) Yu, H.; Williams, D. L.; Ensley, H.
E. Tetrahedron Lett. 2005, 46, 3417-3421. (o) Che´ry, F.; Rollin, P.; De
Lucchi, O.; Cossu, S. Synthesis 2003, 286-292. (p) Imamura, A.; Ando,
H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishidaa, H.; Kiso, M. Tetrahedron
Lett. 2003, 44, 6725-6728. (q) Haberman, J. M.; Gin, D. Y. Org. Lett.
2001, 3, 1665-1668. (r) Wei, P.; Kerns, R. J. J. Org. Chem. 2005, 70,
4195-4198. (s) Benakli, K.; Zha, C.; Kerns, R. J. J. Am. Chem. Soc. 2001,
123, 9461-9462.
A more critical manifestation of this problem presented itself
during the synthesis of the alternating â-(1 f 3)-â-(1 f 4)-
mannan common to Rhodotorula glutinis, Rhodotorula muci-
laginosa, and Leptospira biflexa.14b Donors 4 and 5, both
displaying very bulky glycosyl substituents on O3, showed
unusually poor â selectivity in coupling reactions, thereby
reducing the efficiency of the convergent synthesis of the target
polysaccharide.
(5) (a) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198-1199. (b) Crich,
D.; Sun, S. Tetrahedron 1998, 54, 8321-8348. (c) Crich, D.; Smith, M. J.
Am. Chem. Soc. 2001, 123, 9015-9020. (d) Crich, D. In Glycochemistry:
Principles, Synthesis, and Applications; Wang, P. G., Bertozzi, C. R., Eds.;
Dekker: New York, 2001; pp 53-75. (e) Crich, D. J. Carbohydr. Chem.
2002, 21, 663-686.
We hypothesized that the poor selectivity seen with donors
2, 4, and 5 was the result of steric buttressing between the O2
and O3 protecting groups, resulting in unusually high shielding
of the â face of the glycosyl donor.14a,15 Thus, as illustrated for
the triflate derived from 2, we reason that, of the three possible
staggered conformations around the O3-substituent bond, A is
disfavored by the steric interaction with the rigid benzylidene
ring leading to the preferential population of conformers B and
C in which the bulky silyl group is gauche to C2 and its
substituent (Figure 1).
(6) (a) Crich, D.; Smith, M. J. Am. Chem. Soc. 2002, 124, 8867-8869.
(b) Crich, D.; de la Mora, M.; Vinod, A. U. J. Org. Chem. 2003, 68, 8142-
8148.
(7) In the terminology of Fraser-Reid, a disarming protecting group is
one that deactivates a glycosyl donor, whereas an arming protecting group
is one that activates a glycosyl donor.1b,3c
(8) Jensen, H. H.; Nordstrom, M.; Bols, M. J. Am. Chem. Soc. 2004,
126, 9205-9213.
(9) For earlier studies on the disarming influence of acetal protecting
groups, see: (a) Andrews, C. W.; Rodebaugh, R.; Fraser-Reid, B. J. Org.
Chem. 1996, 61, 5280-5289. (b) Fraser-Reid, B.; Wu, Z. C.; Andrews,
W.; Skowronski, E. J. Am. Chem. Soc. 1991, 113, 1434-1435.
(10) Crich, D.; Chandrasekera, N. S. Angew. Chem., Int. Ed. 2004, 43,
5386-5389.
(11) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997, 119, 11217-11223.
(12) For examples from this laboratory, see ref 4d and the following:
(a) Crich, D.; Li, H.; Yao, Q.; Wink, D. J.; Sommer, R. D.; Rheingold, A.
L. J. Am. Chem. Soc. 2001, 121, 5826-5828. (b) Crich, D.; Li, H. J. Org.
Chem. 2002, 67, 4640-4646. (c) Crich, D.; Dai, Z. Tetrahedron 1999, 55,
1569-1580. (d) Crich, D.; Barba, G. R. Tetrahedron Lett. 1998, 39, 9339-
9342. (e) Crich, D.; de la Mora, M. A.; Cruz, R. Tetrahedron 2002, 58,
35-44. (f) Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, 126,
14930-14934. (g) Crich, D.; Banerjee, A. Org. Lett. 2005, 7, 1935-1938.
(h) Crich, D.; Dudkin, V. J. Am. Chem. Soc. 2002, 124, 2263-2266. (i)
Dudkin, V. Y.; Crich, D. Tetrahedron Lett. 2003, 44, 1787-1789.
(13) For examples from other laboratories, see: (a) Dudkin, V. K.; Miller,
J. S.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 736-738. (b) Miller,
J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2003, 42, 431-434. (c) Nicolaou, K. C.; Mitchell, H. J.;
Rodriguez, R. M.; Fylaktakidou, K. C.; Suzuki, H.; Conley, S. R. Chem.s
Eur. J. 2000, 6, 3149-3165. (d) Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim,
H. J.; Jeong, K.-S. Synlett 2003, 1311-1314. (e) Wu, X.; Schmidt, R. R.
J. Org. Chem. 2004, 69, 1853-1857. (f) Kwon, Y. T.; Lee, Y. J.; Lee, K.;
Kim, K. S. Org. Lett. 2004, 6, 3901-3904. (g) Tanaka, S.-i.; Takashina,
M.; Tokimoto, H.; Fujimoto, Y.; Tanaka, K.; Fukase, K. Synlett 2005, 2325-
2328.
FIGURE 1. Staggered conformations about the C3-O3 bond.
Viewed from the perspective of the O2-substituent bond, the
population of conformer D is likely extremely small due to high
steric congestion. The bulky group on O3 presumably destabi-
lizes conformation E, thus leaving F as the most populous state
(Figure 2). In conformer F the 2-O-benzyl ether is in close
(14) (a) Crich, D.; Dudkin, V. Tetrahedron Lett. 2000, 41, 5643-5646.
(b) Crich, D.; Li, W.; Li, H. J. Am. Chem. Soc. 2004, 126, 15081-15086.
(c) Code´e, J. D. C.; Hossain, L. H.; Seeberger, P. H. Org. Lett. 2005, 7,
3251-3254.
(15) Crich, D.; Jayalath, P. Org. Lett. 2005, 7, 2277-2280.
(16) Crich, D.; Lim, L. B. L. Org. React. 2004, 64, 115-251.
J. Org. Chem, Vol. 71, No. 8, 2006 3065