Journal of the American Chemical Society
Communication
In conclusion, we have developed a palladium-catalyzed
approach to the direct ring-forming C−H alkylation of aromatic
substrates using unactivated alkyl halides. The reaction is
successful with both primary and secondary alkyl bromides and
iodides, and efficiently delivers a diverse range of valuable
carbocyclic and heterocyclic products. Electronic activation of
the aromatic substrates is not required, significantly increasing
the potential substrate scope of this process with respect to
prior polar or radical-mediated ring-forming C−H alkylations.
Furthermore, the mild, catalytic reaction conditions involved
offer an attractive alternative to known stoichiometric Lewis
acid or peroxide-mediated processes.
Scheme 2. Studies Probing the Reaction Mechanism
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for all new
compounds. This material is available free of charge via the
and no C−H alkylation product, consistent with the
intermediacy of carbon-centered radicals. We additionally
prepared enantioenriched (R)-29, which produced indoline
28 as a racemate, also consistent with a single-electron pathway
rather than an SN2-type activation of the alkyl halide. This
reaction was stopped at partial conversion to determine the
enantiopurity of the remaining starting material. Interestingly,
recovered 29 was also completely racemic. The observed
stereoablation of 29 is consistent with a reversible single-
electron activation of the alkyl halide substrate prior to
cyclization. We have also performed an intermolecular
competition experiment involving deuterated substrate 29-d5.
No kinetic isotope effect was observed, demonstrating that C−
H bond cleavage is not involved in the rate-determining step of
the reaction.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Award No. R01 GM107204 from
the National Institute of General Medical Sciences and a UNC
Chapel Hill SURF fellowship (P.T.B.).
REFERENCES
■
(1) (a) Hayashi, R.; Cook, G. R. In Handbook of Cyclization Reactions,
Vol. 2; Ma, S., Ed.; Wiley-VCH: Weinheim, 2010; pp 1025−1054.
(b) Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, 6, 6.
(2) (a) Bowman, W. R.; Storey, J. M. D. Chem. Soc. Rev. 2007, 36,
Our current mechanistic hypothesis for the C−H alkylation
is shown in Scheme 3. The reaction is initiated by a reversible
1803. (b) Allin, S. M.; Barton, W. R. S.; Bowman, W. R.; Bridge nee
́
Mann, E.; Elsegood, M. R. J.; McInally, T.; McKee, V. Tetrahedron
2008, 64, 7745. (c) Menes-Arzate, M.; Martínez, R.; Cruz-Almanza,
R.; Muchowski, J. M.; Osornio, Y. M.; Miranda, L. D. J. Org. Chem.
2004, 69, 4001. (d) Artis, D. R.; Cho, I.-S.; Jaime-Figueroa, S.;
Muchowski, J. M. J. Org. Chem. 1994, 59, 2456. (e) Vaillard, S. E.;
Schulte, B.; Studer, A. In Modern Arylation Methods; Ackermann, L.,
Ed.; Wiley-VCH: Weinheim, 2009; pp 475−511.
Scheme 3. Plausible Mechanism for the Palladium-Catalyzed
Ring-Forming C−H Alkylation
(3) (a) Ly, T.-M.; Quiclet-Sire, B.; Sortais, B.; Zard, S. Z. Tetrahedron
Lett. 1999, 40, 2533. (b) Charrier, N.; Liu, Z.; Zard, S. Z. Org. Lett.
2012, 14, 2018. (c) Quiclet-Sire, B.; Zard, S. Z. Pure Appl. Chem. 2011,
83, 519. (d) Biechy, A.; Zard, S. Z. Org. Lett. 2009, 11, 2800.
(4) (a) Liu, C.; Liu, D.; Zhang, W.; Zhou, L.; Lei, A. Org. Lett. 2013,
15, 6166. (b) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 12084. Intermolecular C−H functionalizations involving
activated alkyl halides have also been achieved in certain instances:
(c) He, R. Y.; Zeng, H. T.; Huang, J. M. Eur. J. Org. Chem. 2014, 4258.
(d) Loy, R. N.; Sanford, M. S. Org. Lett. 2011, 13, 2548. (e) Furst, L.;
Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R.
J. Org. Lett. 2010, 12, 3104. (f) Lapointe, D.; Fagnou, K. Org. Lett.
2009, 11, 4160.
(5) For an intramolecular C−H alkylation of arenes with unactivated
neopentyl alkyl halides (no β-hydrogens): Beaulieu, L.-P. B.; Roman,
́
D. S.; Vallee, F.; Charette, A. B. Chem. Commun. 2012, 48, 8249.
(6) (a) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew.
Chem., Int. Ed. 2009, 48, 6045. (b) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 6097. (c) Shabashov, D.; Daugulis, O.
J. Am. Chem. Soc. 2010, 132, 3965. (d) Chen, Q.; Ilies, L.; Nakamura,
E. J. Am. Chem. Soc. 2011, 133, 428. (e) Hofmann, N.; Ackermann, L.
J. Am. Chem. Soc. 2013, 135, 5877. (f) Song, W.; Lackner, S.;
single-electron oxidative addition of the alkyl halide substrate,
generating carbon-centered radical 61.11 The formation of the
TEMPO adduct 60, and the generation of both racemic
product and racemic starting material in a reaction involving an
enantioenriched alkyl halide (Scheme 2) is consistent with a
single-electron pathway. The carbon-centered radical then adds
to the aromatic ring to generate a cyclohexadienyl radical
intermediate 62. At this stage, rearomatization could occur via
single-electron oxidation and loss of one proton with
regeneration of the palladium(0) catalyst.12
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX