M. Kishida, H. Akita / Tetrahedron Letters 46 (2005) 4123–4125
4125
Ar-B(OH)2
5. Conclusion
Pd(OAc)2
[O]
In conclusion, a variety of natural and non-natural type
phenylpropenoid glucopyranoside analogues have been
synthesized based on the MH type reaction. Therefore,
structurally diverse phenylpropenoid b-D-glucopyrano-
side analogues could be prepared using a number of
commercially available substituted phenylboronic acids.
AcOB(OH)2
Pd(0)
ArPd(OAc)
O
Glu
PdOAc
Ar
HOAc
3
O
Glu
O
Ar
References and notes
Glu
Intermediate A
4a-f
1. Saratikov, A. S.; Krasnov, E. A.; Duvidson, L. M.;
Sotova, M. I.; Marina, T. F.; Nechoda, M. F.; Axenova,
R. A.; Tscherdinzeff, S. G. Pharmazie 1968, 23, 392–395.
2. (a) Sokolov, S. Ya.; Ivashin, V. M.; Zapesochnaya, G. G.;
Kurkin, V. A.; Shchavlinskii, A. N. Khim. Farm. Zh.
1985, 19, 1367–1371; (b) Furmanowa, M.; Skopinska-
Rozewska, E.; Rogala, E.; Hartwich, M. Acta Soc. Bot.
Pol. 1998, 67, 69–73.
3. Kurkin, V. A.; Zapisochnaya, G. G.; Dubichev, A. G.;
Voronstov, E. D.; Aleksandrova, I. V.; Panova, R. V.
Khim. Pror. Soedin. 1991, 4, 481–490.
4. (a) Akita, H.; Kurashima, K.; Nakamura, T.; Kato, K.
Tetrahedron: Asymmetry 1999, 10, 2429–2439; (b) Kura-
shima, K.; Fujii, M.; Ida, Y.; Akita, H. Chem. Pharm.
Bull. 2004, 52, 270–275.
5. (a) Cho, C. S.; Umemura, S. J. Organomet. Chem. 1994,
465, 85; (b) Du, X.; Suguro, M.; Hirabayashi, K.;
Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, K.;
Okeda, T.; Hui, F. W.; Fugami, K.; Kosugu, M. Org. Lett.
2001, 3, 3313–3316.
6. (a) Lee, R. T.; Lee, Y. C. Carbohydr. Res. 1972, 25, 11; (b)
Talley, E. A.; Vale, M. D.; Yanovsky, E. J. J. Am. Chem.
Soc. 1945, 67, 2037; (c) Yuasa, Yoko; Yuasa, Yoshifumi
Org. Process Res. Dev. 2004, 8, 405–407; (d) Aldrich
catalog (Japan, 2003–2004): allyl-tetra-O-acetyl-b-D-
glucopyranoside; 10,900 yen (1g).
7. Vic, G.; Crout, H. G. Carbohydr. Res. 1995, 279, 315–319.
8. Akita, H.; Kawahara, E.; Kato, K. Tetrahedron: Asym-
metry 2004, 15, 1623–1629.
9. Satisfactory analytical data were obtained for all new
compounds.
Scheme 3. The plausible MH type reaction mechanism with arylbo-
ronic acid.
the palladium(0) species was oxidized by a combination
of copper(II) acetate and lithium acetate to regenerate
palladium(II) as the key species of this catalytic reaction.
Indeed, the treatment of allyl 2,3,4,6-tetra-O-acetyl-b-D-
glucopyranoside (3) and phenylboronic acid in the pres-
ence of tetrakistriphenylphosphine palladium(0) affected
removal of the allyl group instead of the desired MH
type reaction. In addition, non-protected allyl b-D-
glucopyranoside (2) could be reacted with arylboronic
acid under the same conditions. However, the chemical
yield was poor due to a low conversion. For instance,
when allyl b-D-glucopyranoside (2) was treated with
phenylboronic acid in the presence of LiOAc,
Cu(OAc)2, a catalytic amount of Pd(OAc)2 in DMF at
100 °C for 5 h, the desired cinnamyl b-D-glucopyrano-
side (1a) could be obtained in only 11% along with a
large amount of the starting material. This phenomenon
might be explained by the deactivation of arylboronic
acid due to the formation of arylboronic ester from aryl-
boronic acid and allyl b-D-glucopyranoside (2). In fact,
4,4,5,5-tetramethyl-2-(4-hydroxyphenyl)-1,3-dioxaborane
could not be reacted with allyl 2,3,4,6-tetra-O-acetyl-
b-D-glucopyranoside (3) under the same conditions
and it was suggested that a boronic ester was less reac-
tive than a boronic acid to react with an allyl ether in
this case.
10. Hirabayashi, K.; Ando, J.; Kawashima, J.; Nishihara, Y.;
Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 2000, 73,
1409–1417.