Chemistry Letters Vol.34, No.5 (2005)
681
(Figure 3). The overall magnetic behavior of 1 corresponds to an
antiferromagnetic system. The value of ꢁmT at 300 K is
Where ꢂ is a constant value corresponding to the dispersion
of excitation energy, ꢃ is the magnitude of the spin gap, ꢁ0 is the
constant term caused by the core diamagnetism and the possible
Van Vleck paramagnetism, and other symbols have their usual
meaning.6,8 The best fit curve in the temperature range 2–200
K is displayed in Figure 3, and the corresponding parameters
0.308 emuꢃKꢃmolꢁ1
, significantly less than the value of
0.375 emuꢃKꢃmolꢁ1 expected for one spin-only Ni(III) ion with
S = 1/2 per formula unit. With decreasing temperature, the
ꢁmT value first decreases slightly till reaching 0.243 emuꢃKꢃ
molꢁ1 at 208 K. Then ꢁmT drops more sharply below this tem-
perature. On increase of the temperature back to the original
temperature, the same curve is obtained, and no hysteresis is de-
tected. Obviously, 1 undergoes a phase transition at approxi-
mately 208 K. To obtain more information about this transition,
DSC measurements of 1 were performed in the temperature
range of 170–240 K at a warming rate of 20 Kꢃminꢁ1. There is
an abrupt endothermic peak in the DSC trace, which indicates
the phase transition is of first order. The endothermic enthalpy
change (ꢁH) is 559.4 Jꢃmolꢁ1. The phase transition temperature
observed from DSC trace is 208.1 K, in agreement with the value
measured from magnetic susceptibility measurements.
are given as following: ꢂ ¼ 114 emuꢃKꢃmolꢁ1
,
ꢃ=kB ¼
P
2
1337 K, C ¼ 5:7 ꢄ 10ꢁ4 emuꢃKꢃmolꢁ1, R ¼ ðꢁmobs ꢁ ꢁcmalcÞ =
P
2
ðꢁombsÞ ¼ 5:38 ꢄ 10ꢁ11. The value of the parameter, 2ꢃ=
kBTc (Tc is the transition temperature 208 K), is 14.18 and more
removed from the ideal value of 3.53 derived using the BCS for-
mula in a weak coupling regime. This exceptionally large value
means that the short-range magnetic correlations within the
chain are not fully developed and intrinsic magnetoelastic insta-
bility of a 1-D system cannot be considered as a driving force for
the transition; namely, the transition is not a conventional spin–
Peierls transition.6 The phase transition results from cooperative
interactions of ꢀ–ꢀ stacking interactions between the adjacent
cations, NiꢃꢃꢃS bonding, interplane repulsion of anions,9 spin–
spin coupled interaction between nearest neighbor anions,10
and spin lattice interactions.11,12
In the low-temperature phase, 1 exhibits the characteristics
of a spin gap system, so the magnetic susceptibility may be
estimated by the eq 1:
ꢀ
ꢁ
ꢂ
ꢃ
C
T
The authors acknowledge the National Natural Science
Foundation (No. 20171022, No. 20490218) and The Center of
Analysis and Determining of Nanjing University.
ꢁm
¼
exp ꢁ
þ
þ ꢁ0
ð1Þ
T
kBT
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0.0000
0.35
0.30
0.25
0.20
0.15
0.10
References and Notes
1
2
N. Robertson and L. Cronin, Coord. Chem. Rev., 93, 227 (2002).
´
A. T. Coomber, D. Beljonne, R. H. Friend, J. L. Bredas, A.
Charlton, N. Robertson, A. E. Underhill, M. Kurmoo, and P.
Day, Nature, 144, 380 (1996).
χ
0.05
3
4
P. I. Clemenson, Coord. Chem. Rev., 106, 171 (1990).
A. E. Pullen, C. Faulmann, K. I. Pokhodnya, P. Cassoux, and
M. Tokumoto, Inorg. Chem., 37, 6714 (1998).
0.00
0
50
100
150
200
250
300
T / K
χ
5
6
7
a) X. M. Ren, Y. C. Chen, C. He, and S. Gao, J. Chem. Soc.,
Dalton Trans., 2002, 3915. b) J. L. Xie, X. M. Ren, Y. Song,
W. W. Zhang, W. L. Liu, C. He, and Q. J. Meng, Chem.
Commun., 2002, 2346. c) X. M. Ren, Q. J. Meng, Y. Song,
C. J. Hu, C. S. Lu, X. Y. Chen, and Z. L. Xue, Inorg. Chem.,
41, 5931 (2002).
0
50
100
150
T / K
200
250
300
Figure 3. The plot of ꢁm vs T for 1. The solid line represents
the best fit; inset: ꢁmT vs T for 1.
a) X. M. Ren, Q. J. Meng, Y. Song, C. S. Lu, C. J. Hu, and X. Y.
Chen, Inorg. Chem., 41, 5686 (2002). b) X. M. Ren, H. Okudera,
R. K. Kremer, Y. Song, C. He, Q. J. Meng, and P. H. Wu, Inorg.
Chem., 43, 2569 (2004). c) C. L. Ni, D. B. Dang, Y. Song, S.
Gao, Y. Z. Li, Z. P. Ni, Z. F. Tian, L. L. Wen, and Q. J. Meng,
Chem. Phys. Lett., 396, 353 (2003).
12
11
T = 208.1 K
c
∆H = 559.4 J mol −1
Crystallographic data of 1 are: C22H14N5NiS4, monoclinic,
P21=c, fw 535.33, a ¼ 12.168(3), b ¼ 27:046(7), c ¼ 7:354(2)
10
ꢂ
ꢀ
ꢀ 3
A, ꢄ ¼ 103:00(1) , V ¼ 2358:1(11) A , Z ¼ 4, Dcalcd ¼ 1:508
g cmꢁ3
,
T ¼ 293 K, R ¼ 0:076 [I > 2ꢅðIÞ], and 4066
9
8
7
6
independent reflections. Deposited in No. CCDC-260369.
L. C. Isett, D. M. Rosso, and G. L. Bottger, Phys. Rev. B, 22,
4739 (1980).
8
9
S. Alvarez, R. Vicente, and R. Hoffman, J. Am. Chem. Soc., 107,
6253 (1985).
10 M. E. Itkis, X. Chi, A. W. Cordes, and R. C. Haddon, Science,
296, 1443 (2002).
170
180
190
200
210
220
230
240
T / K
11 E. Pytte, Phys. Rev. B, 10, 4637 (1974).
12 E. Q. Gao, S. Q. Bai, Z. M. Wang, and C. H. Yan, J. Am. Chem.
Soc., 125, 4984 (2003).
Figure 4. DSC plot for 1 showing the phase transition at
208.1 K.
Published on the web (Advance View) April 9, 2005; DOI 10.1246/cl.2005.680