I. Matsuo et al. / Tetrahedron Letters 46 (2005) 4197–4200
4199
References and notes
1. Trombetta, E. S. Glycobiology 2003, 13, 77R–91R.
2. Burda, P.; Aebi, M. Biochim. Biophys. Acta 1999, 1426,
239–257.
3. Knauer, R.; Lehle, L. Biochim. Biophys. Acta 1999, 1426,
259–273.
4. Breuer, W.; Bause, E. Eur. J. Biochem. 1995, 228, 689–696.
5. (a) Petrescu, A. J.; Butters, T. D.; Reinkensmeier, G.;
Petrescu, S.; Platt, F. M.; Dwek, R. A.; Wormald, M. R.
EMBO J. 1997, 16, 4302–4310; (b) Alvarado, E.; Nukada,
T.; Ogawa, T.; Ballou, C. E. Biochemistry 1991, 30, 881–
886.
6. Preparation of G3M9GN2-pp-dol from yeast: Kelleher,
D. J.; Karaoglu, D.; Gilmore, R. Glycobiology 2001, 11,
321–333.
7. Synthesis of partial structures: (a) Ennis, S. C.; Cumpstey,
I.; Fairbanks, A. J.; Butters, T. D.; Mackeen, M.; Wormald,
M. R. Tetrahedron 2002, 58, 9403–9411; (b) Scaman, C. H.;
Hindsgaul, O.; Palcic, M. M.; Srivastava, O. P. Carbohydr.
Res. 1996, 296, 203–213; (c) Ogawa, T.; Nukada, T.;
Kitajima, T. Carbohydr. Res. 1983, 123, C12–C15.
8. (a) Imperiali, B.; Shannon, K. L.; Rickert, K. W. J. Am.
Chem. Soc. 1992, 114, 7942–7944; Imperiali, B.; Shannon,
K. L.; Unno, M.; Rickert, K. W. J. Am. Chem. Soc. 1992,
114, 7944–7945; (b) Lee, J.; Coward, J. K. J. Org. Chem.
1992, 57, 4126–4135.
9. (a) Matsuo, I.; Wada, M.; Manabe, S.; Yamaguchi, Y.;
Otake, K.; Kato, K.; Ito, Y. J. Am. Chem. Soc. 2003, 125,
3402–3403; (b) Matsuo, I.; Ito, Y. Carbohydr. Res. 2003,
338, 2163–2168; (c) Takatani, M.; Matsuo, I.; Ito, Y.
Carbohydr. Res. 2003, 338, 1073–1081; (d) Totani, K.;
Matsuo, I.; Takatani, M.; Arai, M. A.; Hagihara, S.; Ito,
Y. Glycocojugate J. 2004, 21, 67–74.
Figure 2. 1H NMR spectra (400 MHz, D2O, 23 ꢁC, referenced to HOD
adjusted to 4.65 ppm) of tridecasaccharide 2b (A) and tetradecasac-
charide 1c (B). Anomeric signals derived from a-Glc are indicated by
arrows.
by MeOTf16 to afford 16 as a single isomer in 85% yield.
On the other hand, glycosylation of 5 with trisaccharide
donor 4 (1.6 equiv) gave 57% yield of tetradecasaccha-
ride 17, which, unfortunately, contaminated with a
detectable amount of the b-isomer (a/b = 19:1). Since
no chromatographic conditions were found to separate
these isomers in a preparative scale, the mixture was
carried on further. Complete deprotection of 16 was
performed as follows: (1) conversion of phthalimide
groups to acetamide, (2) Pd(OH)2 catalyzed debenzyl-
ation, and (3) deacetylation, to give tridecasaccharide
2b17 in 48% overall yield. The presence of 2 a-linked
Glc was confirmed by 1H NMR [dH 5.212 (d, J
3.66 Hz), 5.121 (d, J 3.66 Hz)]. Tetradecasaccharide 17
was deprotected in the same manner, and final purifica-
tion by HPLC using Fluorex column (conditions; 20/
· 250 mm, eluent; H2O, flow rate: 10 ml/min, detection
UV 214 nm) allowed the isolation of anomerically pure
1c [dH 5.381 (d, J 2.2 Hz), 5.122 (d, J = 3.17 Hz, 1H),
5.034 (d, J = 2.9 Hz, 1H)] in 56% yield.18 The 1H
NMR spectrum of 1c and 2b were in excellent agreement
with those reported for closely related compounds (Fig.
2).19
10. (a) Spiro, R. G. Cell. Mol. Life Sci. 2004, 61, 1025–1041;
(b) Helenius, A.; Aebi, M. Science 2001, 291, 2364–2369;
(c) Ellgaard, L.; Helenius, A. Nature Rev. Mol. Cell Biol.
2003, 4, 181–191.
11. Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155–
173; Mootoo, D. R.; Konradsson, P.; Udodong, U.;
Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583–5584.
12. (a) Suzuki, K.; Mizuta, T.; Yamaura, M. J. Carbohydr.
Chem. 2003, 22, 143–147; (b) Suzuki, K.; Nonaka, H.;
Yamaura, M. Tetrahedron Lett. 2003, 44, 1975–1977.
13. Suzuki, K.; Maeta, H.; Matsumoto, T. Tetrahedron Lett.
1989, 30, 4853–4854.
1
14. 12: H NMR (400 MHz, CDCl3) d 6.03 (t, J 9.6 Hz, 1H),
5.82 (t, J 9.6 Hz, 1H), 5.41 (t, J 9.6 Hz, 1H,), 5.29 (t, J
9.6 Hz, 1H), 5.14 (d, J 3.6 Hz, 1H, H-1a-Glc), 4.93 (d, J
3.2 Hz, 1H, H-1a-Glc); 13C NMR (CDCl3) d 96.91 (1JC–H
168 Hz, C-1a-Glc), 94.98 (1JC–H 170 Hz, C-1a-Glc); MS
(MALDI-TOF) C72H66O21Na: Calcd 1289.1. Found:
In conclusion, convergent and stereoselective synthetic
routes to Glc3Man9GlcNAc2 (1c) and Glc2Man9Glc-
NAc2 (2b) were established. These oligosaccharides will
be valuable standards to reveal protein–oligosaccharide
interactions involved in glycoprotein biosynthesis. Fu-
ture studies are going to be directed to the development
of practical methodology to convert them to oligosac-
charide–dolichyl pyrophosphate conjugates.
1
1290.3 (M+Na)+. 4: H NMR (400 MHz, CDCl3) d 8.00–
6.63 (m, Ar), 6.14 (t, J 10 Hz, 1H) 5.86 (t, J 10 Hz, 1H), 5.82
(d, J 3.6 Hz, 1H, H-1a-Glc), 5.45, (t, J 10 Hz, 1H), 5.40 (s,
1H, PhCH), 5.27, (t, J 10 Hz, 1H), 4.93 (d, J 3.2 Hz, 1H,
H-1a-Glc), 3.83, 3.81, 3.50 (s · 3, OMe), 2.28 (s, 3H, SMe);
13C NMR (100 MHz, CDCl3) d 95.95 (1JC–H 173 Hz,
C-1a-Glc), 95.03 (1JC–H 175 Hz, C-1a-Glc), 86.05 (1JC–H 154 Hz,
C-1b-Glc); MS (MALDI-TOF) C85H80O24Na: Calcd 1540.5.
Found: 1540.2 (M+Na)+. 3: 1H NMR (400 MHz, CDCl3) d
8.02–6.69 (m, Ar), 6.00 (t, J 9.6 Hz, 1H), 5.73 (d, J 3.60 Hz,
1H, H-1a-Glc), 5.47 (s, 1H, PhCH), 5.41 (t, J 9.9 Hz, 1H),
4.51 (d, J 9.6 Hz, 1H, H-1b-Glc), 2.29 (s, 3H, SMe); 13C
NMR (CDCl3) d 102.21, 95.56 (1JC–H 172 Hz, C-1a-Glc),
86.09 (1JC–H 158 Hz, C-1b-Glc); MS (MALDI-TOF)
C55H52O13NaS: Calcd 975.3. Found: 975.7 (M+Na)+.
15. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem.
Biochem. 1994, 50, 21–123.
Acknowledgements
We thank Ms. Akemi Takahashi for technical assis-
tance. Financial support from Ministry of Education,
Culture, Sports, Science and Technology [Grant-in-Aid
for Scientific Research (B) No. 16390011] is
acknowledged.