Communication
ChemComm
6 (a) K. Dahl, C. Halldin and M. Schou, Clin. Transl. Imaging, 2017, 5,
275–289; (b) X. Deng, J. Rong, L. Wang, N. Vasdev, L. Zhang,
L. Josephson and S. H. Liang, Angew. Chem., Int. Ed., 2019, 58, 2580–2605.
7 (a) K. Kumata, J. Yui, Y. Zhang, Y. Kurihara, M. Ogawa, W. Mori,
M. Fujinaga and M. R. Zhang, Bioorg. Med. Chem. Lett., 2017, 27,
4521–4524; (b) T. Yamasaki, M. Fujinaga, Y. Shimoda, W. Mori,
Y. Zhang, H. Wakizaka, M. Ogawa and M. R. Zhang, Bioorg. Med.
Chem. Lett., 2017, 27, 4114–4117.
8 For a recent highlight on labeled phosgene-free carbonyl insertion,
see: J.-P. J. Bow and P. J. Riss, Chem. Methods, 2021, 1, 139–141.
9 For recent labeling method using [11C]CO see: (a) T. Kihlberg,
¨
K. Farhad Karimi and B. Långstrom, J. Org. Chem., 2002, 67,
Scheme 3 Late-stage 11C-radiolabeling of pharmaceutically relevant linear
ureas. RCY: decay-corrected radiochemical yield; Am: decay-corrected.
3687–3692; (b) H. Doi, J. Barletta, M. Suzuki, R. Noyori,
Y. Watanabe and B. Långstrom, Org. Biomol. Chem., 2004, 2,
3063–3066; (c) S. Kealey, S. M. Husbands, I. Bennacef, A. D. Gee
¨
and J. Passchier, J. Labelled Compd. Radiopharm., 2014, 57, 202–208.
¨
10 J. Eriksson, G. Antoni, B. Långstrom and O. Itsenko, Nucl. Med. Biol.,
2021, 92, 115–137.
could be labeled in 63% RCC, by simply adapting the procedure
(Scheme 3). With the SAW approach, the non-purified [11C]1 could
be synthesized in only 10 minutes. We next decided to label
talinolol. Under standard conditions, [11C]37 was isolated in 26 Æ
6% radiochemical yield (RCY) and high Am (55 Æ 10 GBq mmolÀ1).
To the best of our knowledge, carbonyl 11C-labeling of
semicarbazides is unprecedented. Pleasingly, [11C]42 could be
labeled in 31 Æ 4% RCY with a Am of 70 Æ 8 GBq mmolÀ1. These
preliminary examples showcase that the SAW approach will
broaden the scope of original 11C-labeled PET tracers available
for imaging applications.
To conclude, a general methodology for the radiolabeling of
linear ureas and derivatives such as semicarbazides, sulfony-
lureas, hydroxyl ureas, or simple terminal ureas has been
developed. The reaction takes place with controlled amounts
of CO2, the first available building block for 14C and 11C
radioisotopes, resulting in late-stage carbon isotope labeling
of urea-containing drugs and analogues.23
11 (a) E. Hargraves, A. Lashford, A. Rees and B. Roughley, J. Labelled
Compd. Radiopharm., 2007, 50, 435–436; (b) R. J. Hardy, J. C. Sheppard
and M. J. Campbell, Int. J. Appl. Radiat. Isot., 1984, 35, 1071–1072.
12 (a) A. Schirbel, M. Holschbach and H. Coenen, J. Labelled Compd.
Radiopharm., 1999, 42, 537–551; (b) A. A. Wilson, A. Garcia, S. Houle,
O. Sadovski and N. Vasdev, Chem. – Eur. J., 2011, 17, 259–264;
(c) A. K. Haji Dheere, N. Yusuf and A. Gee, Chem. Commun., 2013, 49,
8193–8195; (d) K. Horkka, K. Dahl, J. Bergare, C. S. Elmore,
C. Halldin and M. Schou, ChemistrySelect, 2019, 4, 1846–1849;
(e) K. Dahl, T. L. Collier, R. Cheng, X. Zhang, O. Sadovski,
S. H. Liang and N. Vasdev, J. Labelled Compd. Radiopharm., 2018,
61, 252–262; ( f ) J. Downey, S. Bongarzone, S. Hader and A. D. Gee,
J. Labelled Compd. Radiopharm., 2018, 61, 263–271.
13 E. W. van Tilburg, A. D. Windhorst, M. van der Mey and
J. D. M. Herscheid, J. Labelled Compd. Radiopharm., 2006, 49, 321–330.
14 A. J. Poot, B. van der Wildt, M. Stigter-van Walsum, M. Rongen,
R. C. Schuit, N. H. Hendrikse, J. Eriksson, G. A. M. S. van Dongen
and A. D. Windhorst, Nucl. Med. Biol., 2013, 40, 488–497.
15 For example of sulfonylurea labeling with [11C]CO2, see: J. R. Hill,
X. Shao, N. L. Massey, J. Stauff, P. S. Sherman, A. A. B. Robertson
and P. J. H. Scott, Bioorg. Med. Chem. Lett., 2020, 30, 127186.
´
16 (a) A. Del Vecchio, F. Caille, A. Chevalier, O. Loreau, K. Horkka,
H. Halldin, M. Schou, N. Camus, P. Kessler, B. Kuhnast, F. Taran
and D. Audisio, Angew. Chem., Int. Ed., 2018, 57, 9744–9748;
(b) A. Del Vecchio, A. Talbot, F. Caille, A. Chevalier, A. Sallustrau,
O. Loreau, G. Destro, F. Taran and D. Audisio, Chem. Commun., 2020,
56, 11677–11680.
We thank the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie grant
agreement no. 675071 and the CEA. The authors thank D.-A.
Buisson and S. Lebrequier for the excellent analytical support.
´
17 (a) A. Motani, Z. Wang, M. Conn, K. Siegler, Y. Zhang, Q. Liu,
S. Johnstone, H. Xu, S. Thibault, Y. Wang, P. Fan, R. Connors, H. Le,
G. Xu, N. Walker, B. Shan and P. Coward, J. Biol. Chem., 2009, 284,
7673–7680; (b) C. Cioffi, N. Dobri, E. Freeman, M. Conlon, P. Chen,
D. Stafford, D. Schwarz, K. Golden, L. Zhu, D. Kitchen, K. Barnes,
B. Racz, Q. Qin, E. Michelotti, C. Cywin, W. Martin, P. Pearson,
G. Johnson and K. Petrukhin, J. Med. Chem., 2014, 57, 7731–7757.
18 I. Perkovic, M. Antunovic, I. Marijanovic, K. Pavic, K. Ester, M. Kralj,
J. Vlainic, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and
B. Zorc, Eur. J. Med. Chem., 2016, 124, 622–636.
Conflicts of interest
There are no conflicts to declare.
19 J. Keith, R. Apodaca, M. Tichenor, W. Xiao, W. Jones, J. Pierce,
M. Seierstad, J. Palmer, M. Webb, M. Karbarz, B. Scott, S. Wilson,
L. Luo, M. Wennerholm, L. Chang, S. Brown, M. Rizzolio, R. Rynberg,
S. Chaplan and J. Breitenbucher, ACS Med. Chem. Lett., 2012, 3, 823–827.
Notes and references
1 J. Atzrodt, V. Derdau, W. J. Kerr and M. Reid, Angew. Chem., Int. Ed.,
2018, 57, 1758–1784.
2 (a) E. M. Isin, C. S. Elmore, G. N. Nilsson, R. A. Thompson and 20 M. Altman, C. Fischer, J. D. Katz, T. M. Williams, X. F. Zhang and
L. Weidolf, Chem. Res. Toxicol., 2009, 25, 532–542; (b) C. S. Elmore
and R. A. Bragg, Bioorg. Med. Chem. Lett., 2015, 25, 167–171.
3 (a) P. M. Matthews, E. A. Rabiner, J. Passchier and R. N. Gunn, Br.
H. Zhou, WO 2013/181075 Al, 2013.
21 A. Pirzer, R. Lasch, H. Friedrich, H. Hubner, P. Gmeiner and
M. Heinrich, J. Med. Chem., 2019, 62, 9658–9679.
J. Clin. Pharmacol., 2012, 73, 175–186; (b) N. Penner, L. Xu and 22 (a) B. H. Rotstein, S. H. Liang, J. P. Holland, T. L. Collier,
C. Prakash, Chem. Res. Toxicol., 2012, 25, 513–531; (c) A. Del Vecchio,
G. Destro, F. Taran and D. Audisio, J. Labelled Compd. Radiopharm.,
2018, 61, 988–1007.
4 (a) R. Voges, J. R. Heys and T. Moenius, Preparation of Compounds
Labeled with Tritium and Carbon-14, John Wiley & Sons, Ltd,
2009; (b) P. J. H. Scott, Angew. Chem., Int. Ed., 2009, 48, 6001–6004.
5 (a) P. Sikka, J. K. Sahu, A. K. Mishra and S. R. Hashim, Med. Chem.,
J. M. Hooker, A. A. Wilson and N. Vasdev, Chem. Commun., 2013,
49, 5621–5629; (b) B. H. Rotstein, S. H. Liang, M. S. Placzek,
´
J. M. Hooker, A. D. Gee, F. Dolle, A. A. Wilson and N. Vasdev, Chem.
Soc. Rev., 2016, 45, 4708–4726; (c) X. Deng, J. Rong, L. Wang,
N. Vasdev, L. Zhang, L. Josephson and S. H. Liang, Angew. Chem.,
Int. Ed., 2019, 58, 2580–2605; (d) C. Taddei and V. W. Pike, EJNMMI
Radiopharmacy and Chemistry, 2019, 4, 25.
2015, 5, 479–483; (b) A. K. Ghosh and M. Brindisi, J. Med. Chem., 23 A similar work recently appeared: U. S. Ismailani, M. Munch,
2020, 63, 2751–2788.
B. A. Mair and B. H. Rotstein, Chem. Commun., 2021, 57, 5266–5269.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 6680–6683 | 6683