LETTER
Ugi-Azide Reaction: Synthesis of Benzazocine-tetrazoles
(3) (a) Shevyakov, S. V.; Davydova, O. I.; Kiselyov, A. S.;
957
Me
O
O
N
O
O
Kravchenko, D. V.; Ivachtchenko, A. V.; Krasavin, M. Nat.
Prod. Res. 2006, 20, 871. (b) Floss, H. G. J. Biotechnol.
2006, 124, 242.
CO2Me
N+
Me
OMe
N
Cl–
MeOH–H2O
35%
CO2Me
OMe
(4) (a) Boldi, A. M. Curr. Opin. Chem. Biol. 2004, 9, 281.
(b) Sandulenko, Y.; Krasavin, M. Chem. Heterocycl.
Compd. 2012, 48, 606.
(5) (a) Beke, D. Adv. Heterocycl. Chem. 1963, 1, 167.
(b) Krasnov, K. A.; Kartsev, V. G.; Khrustalev, V. N.
Heterocycles 2007, 71, 13. (c) Ukhin, L. Yu.; Suponitskii, K.
Yu.; Kartsev, V. G. Chem. Nat. Compd. 2003, 39, 482.
(d) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P.
Org. Biomol. Chem. 2007, 5, 1466.
2
N
R
+
N
N
5d
N
Na
N+
N+
N–
C–
3d
CO2Me
MP =
R = 2-ethyl-6-methylphenyl
(6) (a) Voskressensky, L. G.; Borisov, R. S.; Kulikova, L. N.;
Kleimenov, A. V.; Borisova, T. N.; Varlamov, A. V. Chem.
Heterocycl. Compd. 2012, 48, 680. (b) Borisov, R. S.;
Polyakov, A. I.; Medvedeva, L. A.; Khrustalev, V. N.;
Guranova, N. I.; Voskressensky, L. G. Org. Lett. 2010, 12,
3894.
(7) (a) Voskressensky, L. G.; Borisova, T. N.; Soklakova, T. A.;
Kulikova, L. N.; Borisov, R. S.; Varlamov, A. V. Lett. Org.
Chem. 2005, 2, 18. (b) Voskressensky, L. G.; Borisova, T.
N.; Kostenev, I. S.; Vorobiev, I. V.; Varlamov, A. V.
Tetrahedron Lett. 2005, 46, 1975.
(8) Zabrocki, J.; Smith, G. D.; Dunbar, J. B. Jr.; Iijima, H.;
Marshall, G. R. J. Am. Chem. Soc. 1988, 110, 5875.
(9) Gunawan, S.; Hulme, C. Org. Biomol. Chem. 2013, 11,
6036.
(10) For examples of Ugi-azide reactions, see: (a) Ugi, I.;
Steinbruckner, C. Chem. Ber. 1961, 94, 734. (b) Ugi, I.
Angew. Chem., Int. Ed. Engl. 1962, 1, 8. (c) Yue, T.; Wang,
M.-X.; Wang, D.-X.; Zhu, J. Angew. Chem. Int. Ed. 2008,
47, 9454. (d) Mayer, J.; Umkehrer, M.; Kalinski, C.; Ross,
G.; Kolb, J.; Burdack, C.; Hiller, W. Tetrahedron Lett. 2005,
46, 7393. (e) Soeta, T.; Tamura, K.; Fujinami, S.; Ukaji, Y.
Org. Biomol. Chem. 2013, 11, 2168.
O
Cl–
O
O
Me
1) NaN3
2) MP
N
O
+
N
MeO
Me
+
– NaCl
OMe
–
CO2Me
N
N
N
R
N
N
A
B
Scheme 4 A plausible mechanism for the MCR
Our attempts to examine a one-pot, stepwise reaction by
first combining cotarnine, the isocyanide and sodium
azide, and then adding the alkyne also resulted in the for-
mation of a multicomponent mixture, which after purifi-
cation by column chromatography provided the target
azocine 5d in 38% yield.
To date, we have been unable to isolate any other low mo-
lecular weight by-products from this MCR procedure.
(11) Voskressensky, L. G.; Borisova, T. N.; Listratova, A. V.;
Kulikova, L. N.; Titov, A. A.; Varlamov, A. V. Tetrahedron
Lett. 2006, 47, 4585.
In conclusion, we have described the synthesis of isoquin-
oline-tetrazoles and benzazocine-tetrazoles via sequential
azido-Ugi and alkyne-induced ring-expansion reactions.12
A one-pot, multicomponent reaction protocol toward the
ring-expanded product is also reported. Further work
aimed toward optimization of the reaction conditions and
a study of the scope and limitations of this procedure is
underway, and the results will be reported in due course.
(12) Isoquinoline-Tetrazoles 4a–i; General Procedure
Cotarnine chloride (2) (1 mmol), isonitrile 3 (1.2 mmol) and
NaN3 (1.2 mmol) were dissolved in H2O–MeOH (1:5, 5
mL), and the mixture was stirred at r.t. for 18–24 h (TLC
monitoring). Products 4a,b were isolated using flash
chromatography (EtOAc–hexanes, from 1:50 to 1:10).
Products 4c–i precipitated from the reaction mixtures and
were removed by filtration, washed with cold MeOH (15
mL) and dried in air.
Acknowledgment
5-(1-Cyclohexyl-1H-tetrazol-5-yl)-4-methoxy-6-methyl-
5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline (4а)
Yield: 189 mg (51%); colorless powder; mp 147–149 °C
(EtOAc–hexanes); reaction time = 19 h.1H NMR (600 MHz,
DMSO-d6): δ = 1.18–1.33 (m, 2 H), 1.37–1.47 (m, 1 H),
1.60–1.71 (m, 2 H), 1.72–1.79 (m, 2 H), 1.79–1.87 (m, 2 H),
1.91–1.97 (m, 1 H), 2.21 (s, 3 H), 2.56 (dt, J = 4.8, 11.7 Hz,
1 H), 2.64 (dt, J = 4.8, 16.5 Hz, 1 H), 2.79–2.86 (m, 1 H),
2.90–2.96 (m, 1 H), 3.50 (s, 3 H), 4.51–4.59 (m, 1 H), 5.18
(s, 1 H), 5.90 (d, J = 9.6 Hz, 2 H), 6.50 (s, 1 H). 13C NMR
(150 MHz, DMSO-d6): δ = 25.1, 25.2, 25.3, 26.8, 33.1, 33.2,
42.2, 46.8, 52.7, 57.1, 59.3, 101.4, 103.3, 118.2, 129.5,
134.5, 139.9, 148.8, 154.6. HRMS (MALDI): m/z [M + Na]+
calcd for C19H25N5O3Na: 394.1849; found: 394.1861.
Azocines 5; General Procedure
This work was supported by the Russian Foundation for Basic Re-
search (grant # 13-03-00021а and grant # 14-03-93001 Viet-a).
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(1) (a) Li, J. W.-H.; Vederas, J. C. Science 2009, 325, 161.
(b) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
(c) Ganesan, A. Curr. Opin. Chem. Biol. 2008, 12, 306.
(d) McChesney, J. D. Phytochemistry 2007, 68, 2015.
(e) Shelar, D. B.; Shirote, P. J. Biomed. Pharm. J. 2011, 4,
141. (f) Mishra, B. B.; Tiwari, V. K. Eur. J. Med. Chem.
2011, 46, 4769.
DMAD, methyl propiolate or acetyl acetylene (1.2 mmol)
was added to a solution of derivative 4a,c (1 mmol) in TFE
(10 mL). The mixture was stirred for 4–8 hours at 35 °C
(TLC monitoring). The solvent was evaporated under
(2) McArdle, B. M.; Quinn, R. J. ChemBioChem 2007, 8, 788.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 955–958