10.1002/ejoc.202100860
European Journal of Organic Chemistry
COMMUNICATION
Fluorinated Motifs: Synthesis, Properties, and Applications. Wiley-VCH
Verlag GmbH & Co. KGaA, 2020, 1–46.
Acknow ledgem ents ((optional))
[10] a) T. A. Hamlin, C. B. Kelly, N. E. Leadbeater, Eur. J. Org. Chem . 2013,
3658–3661; b) C. Zhu, R. Zhu, H. Zeng, F. Chen, C. Liu, W. Wu, H.
Jiang, Angew. Chem. Int. Ed. 2017, 56, 13324–13328; c) T. Zhang, C.
Xie, H. Sakata, K. Nakajima, T. Shimoyama, T. Watanabe, H. Maekawa,
Eur. J. Org. Chem. 2020, 15, 2237–2243; d) A. Kirschning, H. Sommer,
M. Braun, B. Schröder, Synlett. 2018, 29, 121–125; e) M. Winter, C.
Gaunersdorfer, L. Roiser, K. Zielke, U. Monkowius, Ma. Waser, Eur. J.
Org. Chem. 2018, 3, 418–421; f) A. J. Arduengo III, C. A. Stewart, F.
Davidson, D. A. Dixon, J. Y. Becker, S. Anthony Culley, M. B. Mizen, J.
Am. Chem. Soc. 1987, 109, 627–647; g) C. Aubert, J.-P. Bégué, M.
Charpentier-Morize, G. Nee, B. Langlois, J. Fluorine Chem . 1989, 44,
361–76; h) D. V. Sevenard, O. Kazakovaa, R.-M. Schotha, E. Lorka, D.
L. Chizhovb, J. Poveleita, G.-V. Röschenthaler, Synthesis. 2008, 12,
1867–1878.
We are grateful to the National Natural Science Foundation of
China (21901191), Guangdong Basic and Applied Basic
Research Foundation (2021A1515010105), the Fundamental
Research Funds for the Central Universities and Wuhan
University for financial support.
Keyw ords: Difluoromethyl • Fluorine • Ketones • Radical Brook
rearrangement • Trifluoromethyl
[1]
a) G. Lee, J. Won, S. Choi, M. Baik, S. Hong, Angew. Chem. Int. Ed.
2020, 59, 16933–16942; b) T. Eicher, S. Hauptmann, A. Speicher in
The Chemistry of Heterocycles ( Eds.: H.-G. Schmalz, T. Wirth ) ,
Wiley-VCH, Weinheim, 2003, pp. 52-98; c) C. Paal, Ber. Dtsch. Chem.
Ges. 1884, 17, 2756–2767; d) L. Knorr, Ber. Dtsch. Chem. Ges. 1884,
17, 2863–2870; e) A. Padwa, A. Rodriguez, M. Tohidi, T. Fukunaga, J.
Am. Chem. Soc. 1983, 105, 933–943.
[11] H. Jakobi, A. Martelletti, J. Dittgen, I. Haeuser-Hahn, D. Feucht, C.
Rosinger, Eur. Pat. Appl. 2010, EP 2194052 A1 20100609.
[12] a) A. G. Brook, Acc. Chem. Res. 1974, 7, 77–84; b) W. H. Moser,
Tetrahedron. 2001, 57, 2065–2084; c) M. D. Paredes, R. Alonso, J. Org.
Chem. 2000, 65, 2292–2304; d) B. Quiclet-Sire, S. Z. Zard, Chem
Commun. 2014, 50, 5990–5992; e) Y. Deng, Q. Liu, A. B. Smith, J. Am.
Chem . Soc. 2017, 139, 9487–9490; f) Y.-M. Tsai, C.-D. Cherng,
Tetrahedron Lett. 1991, 32, 3515–3518; g) J. C. Dalton, R. A. Bourque,
J. Am. Chem. Soc. 1981, 103, 699–700.
[2]
a) W. Fenical, R. K. Okuda, M. M. Bandurraga, P. Culver, R. S. Jacobs,
Science. 1981, 212, 1512–1514; b) S. N. Abramson, J. A. Trischman, D.
M. Tapiolas, E. E. Harold, W. Fenical, P. Taylor, J. Med. Chem. 1991,
34, 1798–1804.
[3]
[4]
[5]
[6]
H. Xu, J. Zhang, D. Fu, R. Qian, Q. Feng, Faming Zhuanli Shenqing,
2017, CN106565665.
[13] a) X. Chen, X. Gong, Z. Li, G. Zhou, Z. Zhu, W. Zhang, S. Liu, X. Shen,
Nat. Commun. 2020, 11, 2756; b) Z. Yang, Y. Niu, X. He, S. Chen, S.
Liu, Z. Li, X. Chen, Y. Zhang, Y. Lan, X. Shen, Nat. Commun. 2021, 12,
2131; c) Y. Zhang, Y. Zhang, X. Shen. Chem . Catalysis. 2021, 1, 423–
436.
Drugs Exp. Clin. Res. 1985, 11, 831–840.
a) J. M. Malinowski, Am. J. Health-Syst. Pharm. 1998, 55, 2253–2267;
b) B. D. Roth, Progress in Medicinal Cheniistry. 2002, 40, 1–22.
For recent examples, see a) J. Xuan, Z. Feng, J. Chen, L. Lu, W. Xiao,
Chem. Eur. J. 2014, 20, 3045–3049; b) S. Sarkar, A. Banerjee, W. Yao,
E. V. Patterson, M.-Y. Ngai, ACS Catal. 2019, 9, 10358–10364; c) F.
Wang, B.-X. Liu, W. Rao, S.-Y. Wang, Org. Lett. 2020, 22, 6600–6604;
d) X.-K. He, B.-G. Cai, Q.-Q. Yang, L. Wang, J. Xuan, Chem. Asian J.
2019, 14, 3269–3273; e) N. N. Le, A. M. Rodriguez, J. R. Alleyn, M. R.
Gesinski, Synlett. 2018, 29, 2195–2198; f) J. Yang, F. Mei, S. Fu, Y. Gu,
Green Chem. 2018, 20, 1367–1374; g) X.-T. Bai, Q.-Q. Zhang, S.
Zhang, D.-Y. Chen, J. Fu, J.-Y. Zhu, Y.-B. Wang, Y.-T. Tang, Eur. J.
Org. Chem. 2018, 13, 1581–1588; h) P. J. W. Fuchs, K. Zeitler, J. Org.
Chem. 2017, 82, 7796–7805; i) H. Yin, D. U. Nielsen, M. K. Johansen,
A. T. Lindhardt, T. Skrydstrup, ACS Catal. 2016, 6, 2982–2987; j) I.
Geibel, J. Christoffers, Eur. J. Org. Chem. 2016, 5, 918–920; k) C. Miao,
Y. Zeng, T. Shi, R. Liu, P. Wei, X. Sun, H. Yang, J. Org. Chem. 2016,
81, 43–50; l) Y. Kwon, D. J. Schatz, F. G. West, Angew. Chem. Int. Ed.
2015, 54, 9940–9943; m) P. Setzer, A. Beauseigneur, M. S. M.
Pearson-Long, P. Bertus, Angew. Chem. Int. Ed. 2010, 49, 8691–8694.
[14] a) W. H. Urry, K. Nicolaides, J. Am. Chem. Soc. 1952, 74, 5163–5168; b)
J. A. Franz, R. D. Barrows, D. M.Camaioni, J. Am. Chem. Soc. 1984,
106, 3964–3967; c) R. Leardini, D. Nanni, G. F. Pedulli, A. Tundo,
G.Zanardi, E. Foresti, P. Palmieri, J. Am. Chem. Soc. 1989,111, 7723–
7732; d) Z.-M. Chen, W. Bai, S.-H. Wang, B.-M. Yang, Y.-Q. Tu, F.-M.
Zhang, Angew. Chem. Int. Ed. 2013, 52, 9781–9785; e) X. Liu, F. Xiong,
X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed. 2013, 52, 6962–
6966; f) Y. Yu, U. K. Tambar, Chem. Sci. 2015, 6, 2777–2781; g) H. Yi,
G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev.
2017, 117, 9016–9085; h) Z. Wu, D. Wang, Y. Liu, L. Huan, C. Zhu, J.
Am. Chem . Soc. 2017, 139, 1388–1391; i) P. Wu, K. Wu, L. Wang, Z.
Yu, Org. Lett. 2017, 19, 5450–5453; j) W. -Z. Weng, B. Zhang, Chem.
Eur. J. 2018, 24, 10934–10947; k) Y. Yin, W. -Z. Weng, J. -G. Sun, B.
Zhang, Org. Biomol. Chem. 2018, 16, 2356–2361; l) Y. J. Kim, D. Y.
Kim, Org. Lett. 2019, 21, 1021–1025; m) Z. Guan, H. Wang, Y. Huang,
Y. Wang, S. Wang, A. Lei, Org. Lett. 2019, 21, 4619–4622; n) J. Fang,
W.-L. Dong, G.-Q. Xu, P.-F. Xu, Org. Lett. 2019, 21, 4480–4485; o) Y.
Zhang, Z. Ren, Y. L. Liu, Z. Wang, Z. Li, Eur. J. Org. Chem . 2020, 2020,
5192–5200; p) T. Tian, X. Wang, L. Lv, Z. Li, Chem. Comm un. 2020, 56,
14637–14640.
[7] a) S. Purser, P. R. Moore, S. Swallowb, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320–330; b) D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071–
1081; c) N. A. Meanwell, J. Med. Chem. 2018, 61, 5822–5880; d) T.
Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214
–8264.
[15]
H. Zhang, L. Kou, D. Chen, M. Ji, X. Bao, X. Wu, C. Zhu, Org. Lett.
2020, 22, 5947–5952.
[8]
a) R. Betageri, Y. Zhang, R. M. Zindell, D. Kuzmich, T. M. Kirrane, J.
Bentzien, M. Cardozo, A. J. Capolino, T. N. Fadra, R. M. Nelson, Z.
Paw, D.-T. Shih, C.-K. Shih, L. Zuvela-Jelaska, G. Nabozny, D. S.
Thomson, Bioorg. M ed. Chem. Lett. 2005, 15, 4761–4769; b) M. Zanda,
New J. Chem. 2004, 28, 1401–1411; c) J. Nie, H.-C. Guo, D. Cahard,
J.-A. Ma, Chem. Rev. 2011, 111, 455–529; d) X.-H. Xu, K. Matsuzaki,
N. Shibata, Chem. Rev. 2015, 115, 731–764.
[9]
a) C. D. Sessler, M. Rahm, S. Becke, J. M. Goldberg, F. Wang, S. J.
Lippard, J. Am. Chem. Soc. 2017, 139, 9325–9332; b) Y. Zafrani, D.
Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano, E. Gershonov,
S. Saphier, J. Med. Chem. 2017, 60, 797–804; c) Y. Zafrani, Gali Sod-
Moriah, D. Yeffet, A. Berliner, D. Amir, D. Marciano, S. Elias, S. Katalan,
N. Ashkenazi, M. Madmon, Eytan Gershonov, S. Saphier, J. Med.
Chem. 2019, 62, 5628–5637; d) J. Hu, W. Zhang, F. Wang, Chem.
Commun.
2009,
7465–7478;
e)
Y.-L.
Xiao,
X.
Zhang,
Difluoromethylation and Difluoroalkylation of (Hetero) Arenes. Emerging
4
This article is protected by copyright. All rights reserved.