3780
Organometallics 2005, 24, 3780-3783
Tetranuclear Rhodium(I) Macrocycle Containing
Cyclodiphosphazane
[Rh2(µ-Cl)2(CO)2{(tBuNP(OC6H4OMe-o))2-KP]2 and Its
Reversible Conversion into
trans-[Rh(CO)Cl{(tBuNP(OC6H4OMe-o))2-KP}2]
P. Chandrasekaran,† Joel T. Mague,‡ and Maravanji S. Balakrishna*,†
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076,
India, and Department of Chemistry, Tulane University, New Orleans, Louisiana 70118
Received April 5, 2005
The 1:1 reaction between cis-[tBuNP(OC6H4OMe-o)]2 (2) and [Rh(µ-Cl)(CO)2]2 affords novel
tetranuclear rhodium(I) macrocycle (3) containing two cyclodiphosphazanes bridged by two
[Rh(µ-Cl)(CO)]2 moieties, whereas the corresponding 4:1 reaction affords trans-[Rh(CO)Cl-
{(tBuNP(OC6H4OMe-o))2-κP}2] (4).
Introduction
though the main group chemistry of cyclodiphos-
phazanes has been extensively studied by Chivers’ and
Stahl’s groups,6 their utility in coordination chemistry
is limited7 and their polynuclear transition-metal com-
plexes are even less extensive.8 We report here the
synthesis of a novel tetrarhodium(I) macrocycle contain-
ing two [Rh(µ-Cl)(CO)]2 units bridged by two cyclo-
diphosphazanes and of a trans-mononuclear rhodium(I)
derivative containing two monodentate cyclodiphos-
phazanes.
In recent years, there has been considerable interest
in the construction of supramolecular compounds through
coordination chemistry.1 The metallamacrocycles2 are
one of the most important supramolecular architectures
used in catalysis, sensors, and molecular electronics.3
Nitrogen donor ligands with bis(pyridine) frameworks
have been widely used for constructing macrocycles.4
Macrocycles containing phosphorus centers are less
extensive, mainly due to the lack of availability of
suitable phosphorus(III) frameworks. Diazadiphosphe-
tidines or cyclodiphosphazanes of the type [RNPCl]2
with almost planar N2P2 rings are one such type of
system which can form a variety of macrocycles through
nucleophilic substitutions at phosphorus centers.5 Al-
Results and Discussion
The reaction of cyclodiphosphazane, [tBuNPCl]2 (1),
with 2 equiv of o-methoxyphenol in the presence of
triethylamine afforded cis-[tBuNP(OC6H4OMe-o)]2 (2)
in quantitative yield. Compound 2 is a white solid
and soluble in all common organic solvents. The 31P
NMR spectrum of 2 shows a single resonance at 145.7
ppm indicating the symmetric nature of two phos-
phorus centers. The analytical data, 1H NMR, and mass
spectral data are consistent with the structure proposed
for 2.
In the reaction of [Rh(µ-Cl)(CO)2]2 with 1 equiv of 2,
a tetrarhodium(I) macrocycle, [Rh2(µ-Cl)2(CO)2{(tBuNP-
(OC6H4OMe-o))2-κP}]2 (3), was obtained as shown in
Scheme 1. The 31P NMR spectrum of complex 3 consists
of an AA′XX′ multiplet9 centered at 115.8 ppm with
* To whom correspondence should be addressed. Fax: +91-22-2572-
† Indian Institute of Technology.
‡ Tulane University.
(1) (a) Lehn, J. M. Chem. Eur. J. 2000, 6, 2097. (b) Leininger, S.;
Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Fujita, M.
Chem. Soc. Rev. 1998, 417.
(2) (a) Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Mohapatra,
P. P.; Godinez, L. A. Chem. Eur. J. 2004, 10, 1493. (b) Eisenberg, A.
H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Rheingold,
A. L. Organometallics 2001, 20, 2052. (c) Brasey, T.; Scopelliti, R.;
Severin, K. Inorg. Chem. 2005, 44, 160. (d) Liang, X.; Parkinson, J.
A.; Weishaupl, M.; Gould, R. O.; Paisey, S. J.; Park, H.; Hunter, T. M.;
Blindauer, C. A.; Parsons, S.; Sadler, P. J. J. Am. Chem. Soc. 2002,
124, 9105.
(3) (a) Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C.
A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125,
10508. (b) VanDelden, R. A.; Hurenkamp, J. H.; Feringa, B. L. Chem.
Eur. J. 2003, 9, 2845. (c) Schalley, C. A. Angew. Chem., Int. Ed. 2002,
41, 1513.
(4) (a) Yamanoi, Y.; Sakamoto, Y.; Kusukawa, T.; Fujita, M.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2001, 123, 980. (b)
Schmitz, M.; Leininger, S.; Fan, J.; Arif, A. M.; Stang, P. J. Organo-
metallics 1999, 18, 4817. (c) Wurthner, F.; Sautter, A. Chem. Commun.
2000, 445.
(5) (a) Gonce, F.; Caminade, A. M.; Boutonnet, F.; Majoral, J. P. J.
Org. Chem. 1992, 57, 970. (b) Kommana, P.; Kumara Swamy, K. C.
Inorg. Chem. 2000, 39, 4384. (c) Garcia, F.; Kowenicki, R. A.; Kuzu, I.;
Riera, L.; McPartlin, M.; Wright, D. S. Dalton Trans. 2004, 2904. (d)
Bashall, A.; Doyle, E. L.; Tubb, C.; Kidd, S. J.; McPartlin, M.; Woods
A. D.; Wright, D. S. Chem. Commun. 2001, 2542. (e) Garcia, F.;
Goodman, J. M.; Kowenicki, R. A.; Kuzu, I.; McPartlin, M.; Silva, M.
A.; Riera, L.; Woods, A. D.; Wright, D. S. Chem. Eur. J. 2004. 10, 6066.
(6) (a) Briand, G. G.; Chivers, T.; Krahn, M. Coord. Chem. Rev. 2002,
233, 237 and references therein. (b) Stahl, L. Coord. Chem. Rev. 2000,
210, 203. and references therein. (c) Chivers, T.; Fedorchuk, C.; Krahn,
M.; Parvez, M.; Schatte, G. Inorg. Chem. 2001, 40, 1936.(d) Chivers,
T.; Krahn, M.; Parvez, M. Chem. Commun. 2000, 463. (e) Chivers, T.;
Krahn, M.; Parvez, M.; Schatte, G. Inorg. Chem. 2001, 40, 2547.
(7) (a) Balakrishna, M. S.; Reddy, V. S.; Krishnamurthy, S. S.; Nixon,
J. F.; Laurent, J. C. T. R. B. Coord. Chem. Rev. 1994, 94, 9, l. (b)
Balakrishna, M. S.; Krishnamurthy, S. S. J. Organomet. Chem. 1992,
424, 243. (c) Reddy, V. S.; Krishnamurthy, S. S.; Nethaji, M. J.
Organomet. Chem. 1992, 438, 99. (d) Laurent, J. C. T. R. B.; Sinclair,
J.; Nixon, J. F. J. Organomet. Chem. 1984, 262, 379.
(8) (a) Bond, A. D.; Doyle, E. L.; Garc´ıa, F.; Kowenicki, R. A.;
McPartlin, M.; Riera, L.; Wright, D. S. Chem. Commun. 2003, 2990.
(b) Lief, G. R.; Carrow, C. J.; Stahl, L.; Staples, R. J. Chem. Commun.
2001, 1562.
10.1021/om0502537 CCC: $30.25 © 2005 American Chemical Society
Publication on Web 06/22/2005