5042 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 15
Brief Articles
(15) Purandare, A. V.; Wan, H.; Laing, N.; Benbatoul, K.; Vaccaio,
W.; Poss, M. A. Identification of a potent and rapidly reversibile
inhibitor of the 20S-proteasome. Bioorg. Med. Chem. Lett. 2004,
14, 4701-4704.
(16) Furet, P.; Imbach, P.; Noorani, M.; Koeppler, J.; Lumen, K.;
Lang, M.; Guagnano, V.; Fuerst, P.; Roesel, J.; Zimmermann,
J.; Garcia-Echeverria, C. Entry into a new class of potent
proteasome inhibitors having high antiproliferative activity by
structure-based design. J. Med. Chem. 2004, 47, 4810-4813.
(17) Loidl, G.; Groll, M.; Musiol, H.-J., Huber, R.; Moroder, L.
Bivalency as a principle for proteasome inhibition. Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 5418-5422.
(progetto AIDS). Thanks are also due to Anna Forster
for linguistic assistance.
Appendix
Abbreviations used: Boc, tert-butoxycarbonyl; HATU,
O-(7-azabenzotriazolyl)tetramethyl uronium hexafluo-
rophosphate; HOBt, N-hydroxybenzotriazole; NMM,
N-methylmorpholine; TFA, trifluoroacetic acid; WSC
(water soluble carbodiimide), 1-ethyl-3-(3′-dimethylami-
nopropyl)carbodiimide; Z, benzyloxycarbonyl-N-hydroxy-
succinimide.
(18) Adams, J.; Kauffman, M. Development of the proteasome
inhibitor Velcade (Bortezomib). Cancer Invest. 2004, 22, 304-
311.
(19) Marastoni, M.; Baldisserotto, A.; Canella, A.; Gavioli, R.; De Risi,
C.; Pollini, G. P.; Tomatis, R. Arecoline tripeptide inhibitors of
proteasome. J. Med. Chem. 2004, 47, 1587-1590.
(20) Marastoni, M.; McDonald, J.; Baldisserotto, A.; Canella, A.; De
Risi, C.; Pollini, G. P.; Tomatis, R. Proteasome inhibitors:
Synthesis and activity of arecoline oxide tripeptide derivatives.
Bioorg. Med. Chem. Lett. 2004, 14, 1965-1968.
(21) Bogyo, M.; McMaster, J. S.; Gaczynska, M.; Tortorella, D.;
Goldberg, A. L.; Ploegh, H. Covalent modification of the active
site Thr of proteasome beta-subunits and the E. coli homologue
HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. U.S.A.
1997, 94, 6629-6634.
Supporting Information Available: Analytical data of
intermediates and products 1-8 are available free of charge
References
(1) Ciechanover, A. The ubiquitin-proteasome proteolytic pathway.
Cell 1994, 79, 13-21.
(2) Coux, O.; Tanaka, K.; Golberg, A. L. Structure and function of
the 20S and 26S proteasomes. Annu. Rev. Biochem. 1996, 65,
801-847.
(3) Lo¨we, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W.; Huber,
H. Crystal structure of the 20S proteasome from the archaeon
T. acidophilum at 3.4 Å resolution. Science 1995, 268, 533-539.
(4) Matthews, W.; Dricoll, J.; Tanaka, K.; Ichihara, A.; Golberg, A.
L. Involvement of the proteasome in various degradative pro-
cesses in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 1989,
86, 2597-2601.
(22) Fehrentz, J. A.; Pothion, C.; Califano, J. C.; Loffet, A.; Martinez,
J. Synthesis of chiral N-protected R-amino aldehydes by reduc-
tion of N-protected N-carboxyanhydrides (UNCAs). Tetrahedron
Lett. 1994, 35, 9031-9034.
(23) Reetz, M. T.; Kanand, J.; Griebenow, N.; Harms, K. Stereose-
lective nucleophilic addition reactions of reactive pseudopeptides.
Angew. Chem., Int. Ed. Engl. 1992, 31, 1 (12), 1626-1629.
(24) Hendil, K. B.; Uerkvitz, W. The human multicatalytic protein-
ase: affinity purification using a monoclonal antibody. J. Bio-
chem. Biophys. Methods 1991, 22, 159-165.
(25) Manfredini, S.; Marastoni, M.; Tomatis, R.; Durini, E.; Spisani,
S.; Pani, A.; Marceddu, T.; Musiu, C.; Marongiu, M. E.; La Colla,
P. Peptide T-araC conjugates: solid-phase synthesis and biologi-
cal activity of N4-(acylpeptidyl)-araC. Bioorg. Med. Chem. 2000,
8, 539-547.
(26) Drexler, H. C. A. Activation of the cell death program by
inhibition of proteasome function. Proc. Natl. Acad. Sci. U.S.A.
1997, 94, 855-860.
(27) Rock, K. L.; Gramm, C. F.; Rothstein, L.; Clark, K.; Stein, R.;
Dick, L.; Hwang, D.; Goldberg, A. L. Inhibitors of the proteasome
block the degradation of most cell proteins and the generation
of peptides presented on MHC class I molecules. Cell 1994, 78,
761-771.
(28) Luckey, C. J.; King, G. M.; Marto, J. A.; Venketeswaran, S.;
Maier, B. F.; Crotzer, V. L.; Colella, T. A.; Shabanowitz, J.; Hunt,
D. F.; Engelhard, V. H. Proteasomes can either generate or
destroy MHC class I epitopes: evidence for nonproteasomal
epitope generation in the cytosol. J. Immunol. 1998, 161, 112-
121.
(29) Micheletti, F.; Guerrini, R.; Formentin, A.; Canella, A.; Maras-
toni, M.; Bazzaro, M.; Tomatis, R.; Traniello, S.; Gavioli, R.
Selective amino acid substitutions of a subdominant Epstein-
Barr virus LMP2-derived epitope increase HLA/peptide complex
stability and immunogenicity: implications for immunotherapy
of Epstein-Barr virus-associated malignancies. Eur. J. Immu-
nol. 1999, 29, 2579-2589.
(30) Gavioli, R.; Vertuani, S.; Masucci, M. G. Proteasome inhibitors
reconstitute the presentation of cytotoxic T-cell epitopes in
Epstein-Barr virus-associated tumors. Int. J. Cancer 2002, 101,
532-538.
(5) Rock, K. L.; Golberg, A. L. Degradation of cell proteins and the
generation of MHC class I-presented peptides. Annu. Rev.
Immunol. 1999, 17, 739-779.
(6) Orlowski, R. Z. The role of the ubiquitin-proteasome pathway
in apoptosis. Cell Death Differ. 1999, 6, 303-313.
(7) Palombella, V. J.; Rando, O. J.; Goldberg, A. L.; Maniatis, T.
The ubiquitin-proteasome pathway is required for processing the
NF-k B1 precursor protein and the activation of NF-k B. Cell
1994, 78, 773-785.
(8) Kisselev, A. F.; Golberg, A. L. Proteasome inhibitors: from
research tools to drugs candidates. Chem. Biol. 2001, 8, 739-
758.
(9) Iqbal, M.; Chatterjee, S.; Kauer, J. C.; Das, M.; Messina, P. A.;
Freed, B.; Biazzo, W.; Siman, R. Potent inhibitors of proteasome.
J. Med. Chem. 1995, 38, 2276-2277.
(10) Iqbal, M.; Chatterjee, S.; Kauer, J. C.; Mallamo, J. P.; Messina,
P. A.; Reiboldt, A.; Siman, R. Potent R-ketocarbonil and boronic
ester derived inhibitors of proteasome. Bioorg. Med. Chem. Lett.
1996, 6, 287-290.
(11) Craiu, A.; Gaczynska, M.; Akopian, T.; Gramm, C. F.; Fenteany,
G.; Golberg, A. L.; Rock, K. L. Lactacystin and clasto-lactacystin-
lactone modify multiple proteasome-subunits and inhibit intra-
cellular protein degradation and major histocompatibility com-
plex class I antigen presentation. J. Biol. Chem. 1997, 272,
13437-13445.
(12) Meng, L.; Mohan, R.; Kwok, B. H.; Elofsson, M.; Sin, N.; Crews,
C. M. Epoxomicin, a potent and selective proteasome inhibitor,
exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 10403-10408.
(13) Loidl, G.; Groll, M.; Musiol, H. J.; Ditzel, L.; Huber, R.; Moroder,
L. Bifunctional inhibitors of the trypsin-like activity of eukaryotic
proteasomes. Chem. Biol. 1999, 6, 197-203.
(14) Bouget, K.; Aubin, S.; Delcros J.-G.; Arlot-Bonnemains, Y.;
Baudy-Floc′h, M. Hydrazino-aza and N-azapeptoids with thera-
peutic potential as anticancer agents. Bioorg. Med. Chem. 2003,
11, 4881-4889.
JM040905D