unusual reactivity of strained molecules. The most developed
of such approaches is the allenic Pauson-Khand reaction,1a,d,8
which uses the strain that is inherent to allenes (∼10 kcal/
mol) to drive reactivity. This stereospecific8a approach has
been especially effective for increasing the scope of intramo-
lecular Pauson-Khand reactions. Methylenecyclopropanes9
and cyclobutenes10 are further examples of strained alkenes
that serve as useful coupling partners in Pauson-Khand-
type reactions.
Cyclopropenes are intriguing substrates for synthesis11
because they are easily prepared and handled but at the same
time possess remarkable strain energy (∼55 kcal/mol)12 and
unusual reactivity. Because the chiral environment is compact
and well defined, it is particularly suitable for diastereo-
selective transformations.11a In recent years, the synthetic
utility of cyclopropenes has been augmented by efficient
preparations of enantiomerically enriched derivatives13 and
by the development of facially selective reactions of chiral
cyclopropenes.14 Although it would seem that cyclopropenes
would also be excellent substrates for intermolecular Pau-
son-Khand reactions, there are few examples in the litera-
ture.15
Reactions carried out in hexane were inferior. However, the
reported yields were low,16 the protocol calls for an excess
(2 equiv) of the cyclopropene, and the diastereoselectivity
of the reaction was unclear.16 We decided to thoroughly
investigate the reactivity of cyclopropene Pauson-Khand
reactions and report here that such reactions can proceed with
exceptional efficiency in the presence of sulfide17a or
N-oxide17b,c promoters. The well-defined chiral environment
of cyclopropenes has a powerful influence on diastereose-
lectivity: a single cyclopentenone was isolated in each of
the reactions described in Scheme 1. exo-Diastereoselectivity
Scheme 1. Pauson-Khand Reactions of Chiral Cyclopropenes
Percias and co-workers have elegantly demonstrated that
cyclopropene itself is a good substrate for intermolecular
Pauson-Khand reactions.15b Pauson-Khand reactions of
chiral cyclopropenes have been addressed in a single study
by Smit, Nefedov, and co-workers.15a In that work, the methyl
ester of cyclopropene 1 was reported to react with dicobal-
thexacarbonyl complexes of alkynes on dry silica gel.
(7) Traceless PKR lead references: (a) Reichwein, J. F.; Iacono, S. T.;
Patel, M. C.; Pagenkopf, B. L. Tetrahedron Lett. 2002, 43, 3739. (b)
Brummond, K. M.; Sill, P. C.; Rickards, B.; Geib, S. J. Tetrahedron Lett.
2002, 3735.
(8) Allenic PKR lead references: (a) Brummond, K. M.; Kerekes, A.
D.; Wan, H. J. Org. Chem. 2002, 67, 5156. (b) Brummond, K. M.; Chen,
H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. Org.
Lett. 2002, 4, 1931. (c) Antras, F.; Ahmar, M.; Cazes, B. Tetrahedron Lett.
2001, 42, 8157.
(9) (a) Smit, W. A.; Kireev, S. L.; Nefedov, O. M.; Tarasov, V. A.
Tetrahedron Lett. 1989, 30, 4021. (b) Stolle, A.; Becker, H.; Salaun, J.;
Demeijere, A. Tetrahedron Lett. 1994, 35, 3521. (c) Stolle, A.; Becker, H.;
Salaun, J.; Demeijere, A. Tetrahedron Lett. 1994, 35, 3517. (d) Corlay, H.;
Fouquet, E.; Magnier, E.; Motherwell, W. B. Chem. Commun. 1999, 183.
(10) Lead reference for cyclobutene PKR: Gibson, S. E.; Mainolfi, N.;
Kalindjian, S. B.; Wright, P. T Angew. Chem., Int. Ed. 2004, 43, 5680.
(11) Reviews on cyclopropenes in synthesis: (a) Fox, J. M.; Yan, N.
Curr. Org. Chem. 2005, 9, 719. (b) Baird, M. S. Top. Curr. Chem. 1988,
144, 137. (c) Nakamura, M.; Isobe, H.; Nakamura, E. Chem. ReV. 2003,
103, 1295.
a Alternate conditions: BuSMe or Et2S, 100 °C, dioxane. All
yields are the average of two runs.
(12) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, 126, 4444.
(13) (a) Doyle, M. P.; Protopopova, M.; Mu¨ller, P.; Ene, D.; Shapiro, E.
A. J. Am. Chem. Soc. 1994, 116, 8492. (b) Davies, H. M. L.; Lee, G. H.
Org. Lett. 2004, 6, 1233 (c) Liao, L.-a.; Zhang, F.; Dmitrenko, O.; Bach,
R. D.; Fox, J. M. J. Am. Chem. Soc. 2004, 126, 4490. (d) Liao, L.-a.; Zhang,
F.; Yan, N.; Golen, J. A.; Fox, J. M. Tetrahedron 2004, 60, 1803. (e) Liao,
L.-a.; Yan, N.; Fox, J. M. Org. Lett. 2004, 6, 4937. (f) Chuprakov, S.;
Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 3714. (g) Lou,
Y.; Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey, E. J. J. Am.
Chem. Soc. 2004, 126, 8916.
(14) Lead examples of diastereoselective reactions of cyclopropenes: (a)
Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2004, 126, 3688.
(b) Zohar, E.; Marek, I. Org. Lett. 2004, 6, 341. (c) Liao, L.-a.; Fox, J. M.
J. Am. Chem. Soc. 2002, 124, 14322. (d) Araki, S.; Tanaka, T.; Hirashita,
T.; Setsune, J.-i. Tetrahedron Lett. 2003, 44, 8001.
was rigorously assigned by X-ray crystallography for a
derivative of 9 and by NOE studies for 4. 2-Silyl-3-
alkylcyclopropene-1-carboxylates are particularly good sub-
strates for the Pauson-Khand chemistry. Ethyl 2-hexylcy-
clopropene-1-carboxylategivesthecomplementaryregioisomer,
but the reaction was less efficient and gave 12 in only 22%
isolated yield. Although a number of uncharacterized materi-
(16) Kireev et al.15a assigned endo selectivity for adducts prepared on
silica. In solvent, we observe exo adducts. Also, the highest yield reported
in the paper does not agree with the amounts given in the experimental
section.
(17) (a) Sugihara, T.; Yamada, M.; Yamaguchi, M. Nishiizawa, M. Synlett
1991, 771. (b) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron
Lett. 1990, 31, 5289. (c) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.;
Yoo, S. E. Synlett 1991, 204.
(15) (a) Kireev, S. L.; Smit, V. A.; Ugrak, B. I.; Nefedov, O. M. Bull.
Acad. Sci. USSR (Engl Transl) 1991, 2240. (b) Marchueta, I.; Verdaguer,
X.; Moyano, A.; Perica`s, M. A.; Riera, A. Org. Lett. 2001, 3, 3193. (c)
Nu¨ske, H.; Bra¨se, S.; de Meijere, A. Synlett 2000, 1467 (d) Witulski, B.;
Go¨ssman, M. Synlett 2000, 1793.
3594
Org. Lett., Vol. 7, No. 16, 2005