5530
J. M. Lukesh, W. A. Donaldson / Tetrahedron Letters 46 (2005) 5529–5531
Acknowledgements
4
i) Lewis
acid
BnO
BnO
BnO
Me
H
H
O
OMe
Me
O
O
O
O
ii) TFA
17
Me
17
Me
Me
Partial financial support for this research was provided
by the Department of Education (P200A000228), and
the Marquette University Graduate School Committee
on Research. High resolution mass spectral data were
obtained at the Washington University Resource for
Mass Spectrometry.
19
19
Me
OTMS
5
(+)-6
7
BF3:OEt2/CH2Cl2/–78oC to 23oC
MgBr2/THF/0oC to 23oC
1 : 1.6 (71%)
1 : 0 (86%)
Scheme 2.
References and notes
TFA gave only dihydropyrone (+)-6. The S configura-
tion at C18 (ambruticin numbering) of 6 is the result
of approach of the diene in an exo sense on the less hin-
dered face of the Mg2+ chelated form of optically active
aldehyde 4.
1. Connor, D. T.; Greenough, R. C.; von Strandtmann,
M. J. Org. Chem. 1977, 42, 3664–3669.
2. Gerth, K.; Washausen, P.; Ho¨ftle, G.; Irschik, H.;
Reichenbach, H. J. Antibiot. 1996, 49, 71–75.
3. For other synthetic studies of ambruticin, see: (a) Barnes,
N. J.; Davidson, A. H.; Hughes, L. R.; Procter, G.;
Rajcoomar, V. Tetrahedron Lett. 1981, 22, 1751–1754; (b)
Barnes, N. J.; Davidson, A. H.; Hughes, L. R.; Procter, G.
J. Chem. Soc., Chem. Commun. 1985, 1292–1294; (c)
Proctor, G.; Russell, A. T.; Murphy, P. J.; Tan, P. J.;
Mather, A. N. Tetrahedron 1988, 44, 3953–3973; (d)
Davidson, A. H.; Eggleton, N.; Wallace, I. H. J. Chem.
Soc., Chem. Commun. 1991, 378–380; (e) Marko, I. E.;
Bayston, D. J. Tetrahedron 1994, 50, 7141–7156; (f)
Marko, I. E.; Bayston, D. J. Synthesis 1996, 297–304; (g)
Wakamatsu, H.; Isono, N.; Mori, M. J. Org. Chem. 1997,
62, 8917–8922; (h) Varelis, P.; Johnson, B. L. Aust. J.
Chem. 1997, 59, 43–51; (i) Michelet, V.; Adiey, K.; Bulic,
B.; Genet, J.-P.; Dujardin, G.; Rossignol, S.; Brown, E.;
Toupet, L. Eur. J. Org. Chem. 1999, 2885–2892; (j) Yin, J.;
Llorente, I.; Villanueva, L. A.; Liebeskind, L. S. J. Am.
Chem. Soc. 2000, 122, 10458–10459; (k) Marko, I. E.;
Kumamoto, T.; Giard, T. Adv. Synth. Catal. 2002, 1063–
1067; (l) Michelet, V.; Adiey, K.; Tanier, S.; Dujardin, G.;
Genet, J.-P. Eur. J. Org. Chem. 2003, 2947–2958.
4. (a) Kende, A. S.; Mendoza, J. S.; Fujii, Y. J. Am. Chem.
Soc. 1990, 112, 9645–9646; (b) Kende, A. S.; Mendoza,
J. S.; Fujii, Y. Tetrahedron 1993, 49, 8015–8038.
Reduction of 6 gave the pseudoglycal (+)-8 as a single
diastereomer (Scheme 3). We8a and others14 have re-
ported that the reaction of glycals with trialkylalumin-
ium reagents is useful for the preparation of C-alkyl
glycosides. To this end, treatment of pseudoglycal 8 with
the weak nucleophile triethylaluminium, in the presence
of boron trifluoride etherate, gave a mixture of trans-
and cis-dihydropyrans (8:1 ratio). The major product
arises via axial attack of the weak nucleophile on the
cyclic oxonium ion generated by ionization of 8. The
pure trans-isomer, (ꢀ)-9, was obtained in good yield
after column chromatography. Removal of the benzyl
protecting group, followed by oxidation gave (ꢀ)-11.15
Base-catalyzed epimerization of the trans-ketone, in
benzene, gave a separable mixture of (ꢀ)-11 and (+)-3
(1:2 ratio).16 Two equilibration/separation cycles gave
pure (+)-3 in 83% combined yield. The NMR spectral
data obtained for 3 was identical with that previously
reported.5
5. (a) Kirkland, T. A.; Colucci, J.; Geraci, L. S.; Marx, M.
A.; Schneider, M.; Kaelin, D. E., Jr.; Martin, S. F. J. Am.
Chem. Soc. 2001, 123, 12432; (b) Beberich, S. M.;
Cherney, R. J.; Colucci, J.; Courillon, C.; Geraci, L. S.;
Kirkland, T. A.; Marx, M. A.; Schneider, M.; Martin, S.
F. Tetrahedron 2003, 59, 6819–6832.
6. Lee, E.; Choi, S. J.; Kim, H.; Han, H. O.; Kim, Y. K.;
Min, S. J.; Son, S. H.; Lim, S. M.; Jang, W. S. Angew.
Chem., Int. Ed. 2002, 41, 176–177.
In summary, the synthesis of the dihydropyranyl seg-
ment (3), common to ambruticin and the jerangolids,
from optically active aldehyde 4, was accomplished in
six steps (31.7% overall yield). The length and yield of
our synthetic route is competitive with that reported
by Martin and co-workers.5
7. Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123,
10772–10773.
8. (a) Lukesh, J. M.; Donaldson, W. A. Tetrahedron:
Asymmetry 2003, 14, 757–762; (b) Greer, P. B.; Donald-
son, W. A. Tetrahedron 2002, 58, 6009–6018; (c) Liu, L.;
Donaldson, W. A. Synlett 1996, 103–104.
9. (a) Danishefsky, S.; Bilodeau, M. T. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1380–1419; (b) Danishefsky, S. J.
Aldrichim. Acta 1986, 19, 59–69.
BnO
RO
Me
Me
Et3Al
BF3:OEt2
H
H
H
DIBAL
(88%)
O
O
Me
(+)-6
Me
(80%)
Me
Na/NH3
OH
(+)-8
(–)-9, R = Bn
(–)-10, R = H
THF
(79%)
Me
Me
K2CO3
C6H6
10. Enders, D.; von Berg, S.; Jandeleit, B. Org. Synth. 2002,
78, 177–188.
11. Danishefsky, S.; Yan, C. F.; Singh, R. K.; Gammill, R. B.;
McCurry, P. M.; Fritsh, N.; Clardy, J. J. Am. Chem. Soc.
1979, 101, 7001–7008.
Me
Me
PDC
H
H
H
H
DMF
O
O
O
O
+
11
(80%)
Me
Me
(–)-11
(+)-3
12. Compound 6: 1H NMR (300 MHz, CDCl3): d = 7.39–7.28
(m, 6H), 4.70 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.7 Hz,
1H), 4.34 (ddd, J = 14.7, 3.8, 3.6 Hz, 1H), 3.69 (qd,
J = 6.5, 4.7 Hz, 1H), 2.79 (dd, J = 16.4, 14.7 Hz, 1H), 2.36
(dd, J = 16.7, 3.2 Hz, 1H), 1.68 (d, J = 1.2 Hz, 3H), 1.30
(11 : 3 = 1 : 2) separable
83% pure 3 after two
equilibration/separation cycles
Scheme 3.