Kilic et al.
fortunately, hydrogen peroxide requires efficient activation for
oxygen transfer, advantageously by catalysis.
FIGURE 1. H2O2-activated bis(µ-carboxylato)-MnIII complex A.
2
Manganese complexes of cyclic amines such as 1,4,7-
trimethyl-1,4,7-triazacyclononane, abbreviated as Mn-tmtacn 1,
were reported to catalyze styrene epoxidation with hydrogen
peroxide in methanol-carbonate buffers.6 Because of the
extensive oxidant decomposition that such catalysts cause,
oxidant-to-substrate ratios of at least 100 need to be applied,
which cause highly dilute product mixtures. In the presence of
the alkene substrate, the balance between oxidant decomposition
and epoxidation may be shifted in favor of the latter, when
appropriate reaction conditions are chosen, e.g., acetone as
solvent. Although the peroxide decomposition is suppressed,
undesirable radical reactions take place.7
FIGURE 2. Proposed transition-state structure for the epoxidation of
Z-2c by catalyst 1.
constitutes a valuable mechanistic probe for the elucidation of
oxygen-transfer processes but also offers the opportunity to test
the chemoselectivity of the oxidation in terms of epoxide versus
enone formation, that is, the insertion of an oxygen atom into
the CC double bond or into the allylic CH bond.
We report herein the oxidation of allylic alcohols 2 with the
Mn-tmtacn catalyst 1 and hydrogen peroxide as the oxygen
source. The oxidative activity of catalyst 1, its chemoselectivity,
and stereoselectivity have been investigated in the presence of
various co-catalysts. The present results display that the
chemoselectivity and stereoselectivity of the oxidation of the
chiral allylic alcohols 2 depend not only on the nature and
amount of the carboxylic acid co-catalyst but also on the molar
equivalents of added H2O2 (20-110 mol % with respect to the
substrate).
Recent studies have shown that the catalytic activity of
manganese complexes 1 is strongly enhanced when carboxylic
acids such as oxalic acid, ascorbic acid, and their salts are
employed as co-ligands.8 Besides the readily oxidized phenols
and sulfides, even alkanes have been oxyfunctionalized with
the catalyst 1.9 A spectroscopic examination has shown that
complex 1 undergoes complex redox chemistry in contact with
H2O2.10,8d,e A very recent detailed study of the alkene oxidations
catalyzed by 1 plus carboxylic acid co-catalysts has revealed
that in the presence of H2O2, 1 is transformed into catalytically
active bis(µ-carboxylato)-MnIII complex A (Figure 1) during
2
Results
an initial lag period before the onset of alkene oxidation.8d
Manganese complexes Mn-tmtacn 1 have so far not been
employed for the epoxidation of chiral allylic alcohols 2. The
set of stereochemically labeled alcohols 2 in Table 2 not only
The Mn-tmtacn catalyst11 1 and the chiral allylic alcohols
2a-f were prepared according to literature procedures.12 The
oxidations were conducted with a catalytic amount of Mn-tmtacn
1 and 1.1 equiv of hydrogen peroxide in the presence of a co-
catalyst. A general procedure is given in the Experimental
Section.
(6) Hage, R.; Iburg, J. E.; Kerschner, J.; Koek, J. E.; Lempers, E. L. M.;
Martens, R. J.; Racheria, U. S.; Russell, S. W.; Swathoff, T.; van Vliet, M. R. P.;
Warnaar, J. B.; van der Wolf, L.; Krijnen, B. Nature 1994, 369, 637–639.
(7) (a) De Vos, D.; Bein, T. J. Chem. Soc., Chem. Commun. 1996, 91, 7–
918. (b) De Vos, D.; Bein, T. J. Organomet. Chem. 1996, 520, 195–200.
(8) (a) De Vos, D. E.; Sels, B. F.; Reynaers, M.; Subba Rao, Y. V.; Jacobs,
P. A. Tetrahedron Lett. 1998, 39, 3221–3224. (b) Berkessel, A.; Sklorz, C. A.
Tetrahedron Lett. 1999, 40, 7965–7968. (c) De Boer, J. W.; Brinksma, J.; Browne,
W. R.; Meetsma, A.; Alsters, P. L.; Hage, R.; Feringa, B. L. J. Am. Chem. Soc.
2005, 127, 7990–7991. (d) De Boer, J. W.; Browne, W. R.; Brinksma, J.; Alsters,
P. L.; Hage, R.; Feringa, B. L. Inorg. Chem. 2007, 46, 6353–6372. (e) De Boer,
J. W.; Alsters, P. L.; Meetsma, A.; Hage, R.; Browne, W. R.; Feringa, B. L.
Dalton Trans., accepted for publication.
(9) (a) Smith, J. R. L.; Shul’pin, G. B Tetrahedron Lett. 1998, 39, 4909–
4912. (b) Barton, D. H. R.; Choi, S.-Y.; Hu, B.; Smith, J. A. Tetrahedron 1998,
54, 3367–3378. (c) Barton, D. H. R.; Li, W.; Smith, J. A. Tetrahedron Lett.
1998, 39, 7055–7058. (d) Shul’pin, G. B.; Su¨ss-Fink, G.; Lindsay Smith, J. R.
Tetrahedron 1999, 55, 5345–5358. (e) Nizova, G. V.; Bolm, C.; Ceccarelli, S.;
Pavan, C.; Shul’pin, G. B. AdV. Synth. Catal. 2002, 344, 899–905. (f) Nizova,
G. V.; Shul’pin, G. B. Tetrahedron 2007, 63, 7997–8001. (g) dos Santos, V. A.;
Shul’pina, L. S.; Veghini, D.; Mandelli, D.; Shul’pin, G. B. React. Kinet. Catal.
Lett. 2006, 88, 339–348. (h) Shul’pin, G. B.; Matthes, M. G.; Romakh, V. B.;
Barbosa, M. I. F.; Aoyagi, J. L. T.; Mandelli, D. Tetrahedron 2008, 64, 2143–
2152. (i) Shul’pin, G. B.; Su¨ss-Fink, G.; Shul’pina, L. S. J. Mol. Catal., A: Chem.
2001, 170, 17–34. (k) Woitiski, C. B.; Kozlov, Y. N.; Mandelli, D.; Nizova,
G. V.; Schuchardt, U.; Shul’pin, G. B. J. Mol. Catal. A: Chem. 2004, 222, 103–
119. (l) Shul’pin, G. B.; Nizova, G. V.; Kozlov, Y. N.; Arutyunov, V. S.; dos
Santos, A. C. M.; Ferreira, A. C. T.; Mandelli, D. J. Organomet. Chem. 2005,
690, 4498–4504. (m) Mandelli, D.; Steffen, R. A.; Shul’pin, G. B. React. Kinet.
Catal. Lett. 2006, 88, 165–173. (n) Romakh, V. B.; Therrien, B.; Su¨ss-Fink, G.;
Shul’pin, G. B. Inorg. Chem. 2007, 46, 1315–1331. (o) Sibbons, K. F.; Shastri,
K.; Watkinson, M. J. Chem. Soc., Dalton Trans. 2006, 645–661. (p) Smith,
J. R. L.; Murray, J.; Walton, P. H.; Lowdon, T. R. Tetrahedron Lett. 2006, 47,
2005–2008. (r) Tanese, S.; Bouwman, E. AdV. Inorg. Chem. 2006, 58, 29–75.
(10) Gilbert, B. C.; Kamp, N; W, J.; Smith, J. R. L.; Oakes, J. J. Chem.
Soc., Perkin Trans. 2 1997, 2161–2165.
The allylic alcohol 2e with A1,3 strain was used as the model
substrate to test the reactivity (% conversion of the allylic
alcohol 2e), chemoselectivity (allylic CH oxidation versus
epoxidation), and stereoselectivity (threo versus erythro dia-
stereomers) of the catalyst 1 in the presence of a variety of co-
catalysts. In the absence of either the catalyst Mn-tmtacn 1 or
the co-catalyst, the allylic alcohol 2e remained unchanged even
after 9 h of exposure to the oxidation conditions. The results
for the co-catalysts oxalic acid and ascorbic acid and oxalate
and ascorbate buffers are shown in Table 1. The allylic alcohols
2 without allylic strain, with A1,2 or A1,3 strain, and with both
are given in Table 2, for the best set of oxidation conditions
determined in Table 1. We shall now briefly focus on the
important findings in Tables 1 and 2, by separately considering
the reactivity, chemoselectivity, and diastereoselectivity of this
oxidation system.
(11) Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella,
M.; Vitols, S. E.; Girerd, J. J. Am. Chem. Soc. 1988, 110, 7398–7411.
(12) (a) Morgan, B.; Oehlshla¨ger, A. C.; Stokes, T. M. J. Org. Chem. 1992,
57, 3231–3236. (b) Renz, M. Ph.D. Thesis, University of Wu¨rzburg, 1996. (c)
Adam, W.; Mitchell, C. M.; Paredes, R.; Smerz, A. K.; Veloza, L. A. Liebigs
Ann./Recl. 1997, 1365–1369. (d) Fatiadi, A. J. Synthesis 1976, 65–92. (e) House,
H. O.; Wilkins, J. M. J. Org. Chem. 1978, 43, 2443–2454. (f) Chamberlain, P.;
Roberts, M. L.; Witham, G. H. J. Chem. Soc. B 1970, 1374–1381. (g) Ho, N. H.;
le Noble, W. L. J. Org. Chem. 1989, 54, 2018–2021. (h) Schalley, C. A.;
Schro¨der, D.; Schwarz, H. J. Am. Chem. Soc. 1994, 116, 11089–11097.
1136 J. Org. Chem. Vol. 74, No. 3, 2009