C O M M U N I C A T I O N S
were observed for the signal of -CH3 (∆δ ) 0.13 ppm). In contrast,
the signals of the shell of 2d remained almost unchanged. These
results indicated the selective binding of La(III) ions at the ether
oxygen atoms of the pseudo poly(ethylene oxide) core. The
complexation ratio of La(III) ion to each (OCH2CH2)4OMe chain
was estimated to be roughly 1:1 by the Job’s plot (Supporting
Information). This indicated that the sphere contained ca. 20 La-
(III) ions within the shell. Interestingly, the absorbed metal ions
were expelled by adding a coordinative solvent, such as DMSO.
Thus, upon the addition of DMSO (5 vol %), the broad signals of
the ethylene oxide chain were sharpened and the chemical shifts
of these protons became identical to that of La(III)-free 2d in 5
vol % DMSO/CD3CN.
Figure 3. AFM image of 2b on mica: (a) 3D image; (b) 2D image; and
(c) its height profile.
In summary, we have demonstrated the 24-fold functionalization
at the interior surface of a spherical complex. The facile endohedral
multi-functionalization is mainly indebted to two factors. The first
is the extraordinarily large cavity of the M12L24 spherical complex
that can accommodate 24 functional groups. The second is the
spontaneous and quantitative self-assembly of the spherical shell
from 36 components. By utilizing such a unique method for
“endohedral molecular coating”, well-defined nanospace surrounded
by various types of the interior surfaces can be provided at will, as
currently investigated in our laboratory.
Supporting Information Available: Preparation and physical
properties of 1a-1d, 2a-2d, and Job’s plot of 2d and La(III) ions.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Speir, J. A.; Munshi, S.; Wang, G.; Baker, T. S.; Johnson, J. E.
Structure 1995, 3, 63-78. (b) Douglas, T.; Young, M. Nature 1998, 393,
152-155. (c) Reinisch, K. M.; Nibert, M. L.; Harrison, S. C. Nature 2000,
404, 960-967. (d) Lucas, R. W.; Larson, S. B.; McPherson, A. J. Mol.
Biol. 2002, 317, 95-108. (e) Dragnea, B.; Chen, C.; Kwak, E.-S.; Stein,
B.; Kao, C. C. J. Am. Chem. Soc. 2003, 125, 6374-6375.
(2) (a) Boxter, P.; Lehn, J.-M.; DeCian, A.; Fischer, J. Angew. Chem., Int.
Ed. Engl. 1993, 32, 69-72. (b) Meissner, R. S.; Rebek, J., Jr.; de Mendoza,
J. Science 1995, 270, 1485-1488. (c) Fujita, M.; Oguro, D.; Miyazawa,
M.; Oka, H.; Yamaguchi, K.; Ogura, K. Nature 1995, 378, 469-471. (d)
Beissel, T.; Power, R. E.; Raymond, K. N. Angew. Chem., Int. Ed. Engl.
1996, 35, 1084-1086. (e) MacGillivray, L. R.; Atwood, J. L. Nature 1997,
389, 469-472. (f) Olenyuk, B.; Whiteford, J. A.; Fechtenko¨tter, A.; Stang,
P. J. Nature 1999, 398, 796-799.
(3) (a) Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner,
K. M. Science 1997, 276, 923-926. (b) Lim, M. H.; Blanford, C. F.;
Stein, A. J. Am. Chem. Soc. 1997, 119, 4090-4091. (c) Inagaki, S.; Guan,
S.; Ohsuna, T.; Terasaki, O. Nature 2002, 304, 304-307. (d) Liu, N.;
Chen, Z.; Dunphy, D. R.; Jiang, Y.-B.; Assink, R. A.; Brinker, C. J. Angew.
Chem., Int. Ed. 2003, 42, 1731-1734. (e) Radu, D. R.; Lai, C.-Y.; Wiench,
J. W.; Pruski, M.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004, 126, 1640-
1641.
(4) (a) Oehme, G.; Paetzold, E.; Selke, R. J. Mol. Catal. 1992, 71, L1-L5.
(b) Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.;
Katayose, S. Macromolecules 1996, 29, 8556-8557. (c) Brettreich, M.;
Hirsch, A. Tetrahedron Lett. 1998, 39, 2731-2734. (d) Jin, R.-H. AdV.
Mater. 2002, 14, 889-892. (e) Kang, Y.; Taton, T. A. J. Am. Chem. Soc.
2003, 125, 5650-5651. (f) Adams, M. L.; Lavasanifar, A.; Kwon, G. S.
J. Pharm. Sci. 2003, 92, 1343-1355.
(5) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki, T.;
Sakamoto, S.; Yamaguchi, K.; Fujita, M. Angew. Chem., Int. Ed. 2004,
43, 5621-5625.
(6) Related cuboctahedral complexes: (a) Moulton, B.; Lu, J.; Mondal, A.;
Zaworotko, M. J. Chem. Commun. 2001, 863-864. (b) Eddaoudi, M.;
Kim, J.; Wachter, J. B.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. J. Am.
Chem. Soc. 2001, 123, 4368-4369.
(7) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467-4470. (b) Nguefack, J.-F.; Bolitt, V.; Sinou, D. Tetrahedron Lett.
1996, 37, 5527-5530.
(8) CSI-MS is quite effective for analyzing the solution structures of metal
complexes: (a) Sakamoto, S.; Fujita, M.; Kim, K.; Yamaguchi, K.
Tetrahedron 2000, 56, 955-964. (b) Yamaguchi, K. J. Mass Spectrom.
2003, 38, 473-490.
(9) Both 2a and 2d showed the same diffusion coefficients (logD ) -9.62
in CD3CN), suggesting that the oligo(ethylene oxide) chains of 2d are
inside the sphere.
Figure 4. Molecular modeling of (a) 2b, (b) 2c (trans form), (c) 2c (cis
form), and (d) 2d optimized by a force-field calculation with Cerius2 3.5.
surface. Ligand 1b with a cyanophenyl appendix was assembled
into M12L24 sphere 2b upon complexation with Pd(II). At the core
of 2b, 24 cyano groups were highly concentrated (Figure 4a),
potentially making possible the insulation of metal or metal oxide
clusters therein via cyano coordination. Sphere 2c, assembled from
1c and Pd(II), included 24 photoresponsive azobenzene units (Figure
4b). A modeling study predicted considerable free volume change
of the cavity upon trans-cis isomerization (Figure 4c). Ligand 1d
with an oligo(ethylene oxide) chain was assembled into sphere 2d,
whose cavity was filled with a “pseudo-nanoparticle” of poly-
(ethylene oxide) (Figure 4d). This pseudo-nanoparticle, containing
120 ether oxygen atoms, has a well-defined structure with a
spherical shape (4.6 nm in diameter) and no size and molecular
weight distributions. The structures of 2b-2d were reliably
characterized by 1H NMR and CIS-MS (Supporting Information).9
Particularly interesting is that the poly(ethylene oxide) pseudo-
nanoparticle insulated within spherical complex 2d absorbed metal
ions quite efficiently. When complex 2d was mixed with rare earth
1
metal ions and alkaline earth metal ions, H NMR spectroscopic
studies indicated the formation of metal-ethyleneoxide complex
inside 2d. For example, when 2d (0.83 mM) was mixed with La-
(OTf)3 (12 molar equiv) in CD3CN, outstanding downfield shifts
JA054069O
9
J. AM. CHEM. SOC. VOL. 127, NO. 34, 2005 11951