high intensity light is necessary for true double strand cleavage,
and ambient light is sufficient for cutting only one strand.
Additionally, 9 gives a high degree of nucleic acid cleavage
in DNA–histone assemblies without causing dissociation of
the biomolecular complex. Thus, the attachment of a suitably
charged DNA recognition element to a cleaving agent provides
a method to cleave DNA selectively within DNA–histone
assemblies by exploiting the differences in charge between the
two biomolecules.
8 D. L. Mohler and M. P. Maddox, III, unpublished work.
9 For a review on the chemistry and biology of polyamines and their
conjugates: G. Karigiannis and D. Papaioannou, Eur. J. Org. Chem.,
2000, 1841.
10 For lead references to other DNA-cleaving agents with attached
polyamines: I. Suzuki, A. Shigenaga, H. Nemoto and M. Shibuya,
Tetrahedron Lett., 2004, 45, 1955.
11 For lead references: C. W. Tabor and H. Tabor, Annu. Rev. Biochem.,
1984, 53, 749.
12 For example, see: N. Schmid and J. P. Behr, Biochemistry, 1991, 30,
4357.
13 B. Klein, R. J. Kazlauskas and M. S. Wrighton, Organometallics,
1982, 1, 1338; A. S. Goldman and D. R. Tyler, Inorg. Chem., 1986, 25,
706; D. R. Tyler, Inorg. Chem., 1981, 20, 2257–2261; R. J. Kazlauskas
and M. S. Wrighton, J. Am. Chem. Soc., 1982, 104, 6005; A. S.
Goldman and D. R. Tyler, J. Am. Chem. Soc., 1986, 108, 89; E.
Samuel, M. D. Rausch, T. E. Gismondi, E. A. Mintz and C. Giannoti,
J. Organomet. Chem., 1979, 172, 309; G. K. Yang, K. S. Peters and
V. Va i d a , J. Am. Chem. Soc., 1986, 108, 2511; R. G. Severson and A.
Wojcicki, J. Organomet. Chem., 1978, 157, 173; M. W. Virrels, George,
F. P. A. Johnson, J. P. Turner and J. R. Westwell, Organometallics,
1995, 14, 5203.
14 A. L. Hurley, M. P. Maddox, III, T. L. Scott, M. R. Flood and D. L.
Mohler, Org. Lett., 2001, 3, 2761.
15 E. Raspaud, I. Chaperon, A. Leforestier and F. Livolant, Biophys. J.,
1999, 77, 1547; J. S. Choi, D. K. Joo, C. H. Kim, K. Kim and J. S.
Park, J. Am. Chem. Soc., 2000, 122, 474.
16 The observation of all three forms of DNA in one cleavage reaction
mixture is indicative of a true double-strand cleavage event (as
opposed to the linearization of DNA via the random accumulation
of single-strand damage): L. F. Povirk, W. Wu¨bker, W. Ko¨hnlein and
F. Hutchinson, Nucleic Acids Res., 1977, 4, 3573.
17 T. Shiraki and Y. Sugiura, Biochemistry, 1990, 29, 9795.
18 While no quantum yields for CpW(CO)3Ph have been determined,
the data reported for CpW(CO)3Me suggests that radical production
in these systems may not be very efficient: the quantum yield for the
disappearance of CpW(CO)3Me has been measured as 0.4; however,
the value for the production of [CpW(CO)3]2, which is thought
to be coupled to methyl radical formation, is much lower (0.04)
(see ref. 13).
Acknowledgements
We acknowledge the National Science Foundation and Emory
University for support of this work, as well as shared instrumen-
tation at Emory provided by grants from the NIH and NSF.
Notes and references
1 For lead references: S. V. Kovalenko and I. Alabugin, Chem.
Commun., 2005, DOI: 10.1039/b417012; A. L. Hurley and D. L.
Mohler, Org. Lett., 2000, 2, 2745; J. L. Epstein, X. Zhang, G. A.
Doss, J. M. Liesch, B. Krishnan, J. Stubbe and J. W. Kozarich, J. Am.
Chem. Soc., 1997, 119, 6731.
2 L. F. Povirk, Molecular Aspects of Anti-Cancer Drug Action, ed.
S. Neidle and M. Waring, Verlag-Chemie, Weinheim, 1983.
3 For example, see: G. B. Schuster, Acc. Chem. Res., 2000, 33, 253.
4 For examples, see: C.-H. Yang, W.-F. Chen, M.-C. Jong, B.-J. Jong,
J.-C. Chang, M. J. Waring, L. Ma and L. Sheh, J. Am. Chem. Soc.,
2004, 126, 8104; L. M. Ottinger and T. D. Tullius, J. Am. Chem.
Soc., 2000, 122, 5901; S. R. Rajski, S. Kumar, R. J. Roberts and J. K.
Barton, J. Am. Chem. Soc., 1999, 121, 5615; P. J. Carter, C.-C. Cheng
and H. H. Thorp, J. Am. Chem. Soc., 1998, 120, 632; R. W. Frazee,
J. A. Taylor and T. D. Tullius, J. Mol. Biol., 2002, 323, 665; J. W.
Trauger and P. B. Dervan, Methods Enzymol., 2001, 340, 450.
5 For lead references, see: M. E. Maier, Synlett, 1995, 13; B. Armitage,
Chem. Rev., 1998, 98, 1171; H. Shimakoshi, T. Kaieda, T. Matsuo, H.
Sato and Y. Hisaeda, Tetrahedron Lett., 2003, 44, 5197; P. A. Wender,
S. M. Touami, C. Alayrac and U. C. Philipp, J. Am. Chem. Soc., 1996,
118, 6522; D. P. Arya and D. J. Jebaratnam, Tetrahedron Lett., 1995,
36, 4369.
6 D. L. Mohler, D. R. Dain, A. D. Kerekes, W. R. Nadler and T. L.
Scott, Bioorg. Med. Chem. Lett., 1998, 8, 871; D. L. Mohler, E. K.
Barnhardt and A. L. Hurley, J. Org. Chem., 2002, 67, 4982.
7 E. Gajewski, A. F. Fuciarelli and M. Dizdaroglu, Int. J. Radiat. Biol.,
1988, 54, 445; H. Schuessler and E. Jung, Int. J. Radiat. Biol., 1989,
56, 423; C. Luxford, R. T. Dean and M. Davies, Chem. Res. Toxicol.,
2000, 13, 665.
19 A. R. Morgan, J. S. Lee, D. E. Pulleyblank, N. L. Murray and D. H.
Evans, Nucleic Acids Res., 1979, 7, 547.
20 P. Huston, J. H. Espenson and A. Bakac, Inorg. Chem., 1992, 31,
720.
21 T. J. Connolly, M. V. Baldov´ı, N. Mohtat and J. C. Scaiano,
Tetrahedron Lett., 1996, 37, 4919.
22 The assignment of bands in this gel was confirmed by comparison to
markers and by the trends in the intensity of these bands with respect
to concentration of 9; see ESI†.
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 0 9 1 – 3 0 9 3
3 0 9 3