Scheme 1. Strategy for Synthesis of Polypropionate Arrays
Using Resin Capture-Release
Figure 2. Anthracene-tagged organosilanes.
Scheme 2
iterations of crotylation, cycloaddition-removal, and oxidative
release. This overall strategy, combining synthesis and
purification, represents a specific application of resin-capture-
release involving asymmetric synthesis of complex stereo-
chemical arrays.8 Herein, we report our initial studies on the
synthesis of stereochemically well-defined, polyproprionate-
like molecules using anthracene-tagged, enantioenriched
silane reagents.
We first established that enantioselective crotylations9 may
be performed using anthracene-tagged organosilanes (Figure
2).10 Results of initial experiments involving enantioenriched
organosilanes (R)-4 are shown in Scheme 2. Reaction of
silane (R)-4 with benzaldehyde in the presence of triflic acid
and methoxytrimethylsilane resulted in the formation of syn-
homoallylic ether 6. Without further purification, crude 6
was sequestered to polystyrene maleimide resin 711 (loading
) 1.54 mmol/g) by microwave irradiation (150 °C, 200 W,
15 min) to afford resin 8. Subsequent oxidative cleavage12
of the olefin resulted in release of a mixture of dimethyl
acetal and aldehyde, which was converted to dimethyl acetal
9 (65% yield, four steps, dr > 30:1)13 using montmorillonite
K10 clay/CH(OMe)314 in greater than 95% purity (determined
using LC/evaporative light scattering detection (ELSD)
analysis). The corresponding enantiomer ent-9 was prepared
using an identical procedure starting with silane (S)-4.
We next evaluated the second iteration of the crotylation
sequence (Scheme 3). Crotylation of acetal 9 afforded an
anthracene-tagged product, which was sequestered using PS-
maleimide resin 7 as previously described. Subsequent
oxidative cleavage and workup afforded dimethyl acetal 10a
(dr > 20:1). Stereoisomer 10b was also prepared by an
analogous procedure from (S)-4. We found that the diastereo-
selectivity of the all-syn product 10a was greater than that
of the syn-anti-syn product 10b. The erosion in selectivity
may arise from a set of mismatched reaction partners;
addition of silane (S)-4 to acetal 9 occurs with syn-bond
(6) For approaches to polyketide library synthesis, see: (a) Reggelin,
M.; Brenig, V. Tetrahedron Lett. 1996, 37, 6851. (b) Paterson, I.; Scott, J.
P. Tetrahedron Lett. 1997, 38, 7441. (c) Paterson, I.; Scott, J. P. Tetrahedron
Lett. 1997, 38, 7445. (d) Gennari, C.; Ceccarelli, S.; Piarulli, U.; Aboutayab,
K.; Donghi, M.; Paterson, I. Tetrahedron 1998, 54, 14999. (e) Reggelin,
M.; Brenig, V.; Welcker, R. Tetrahedron Lett. 1998, 39, 4801. (f) Hanessian,
S.; Ma, J.; Wang, W. Tetrahedron Lett. 1999, 40, 4631. (g) Paterson, I.;
Scott, J. P. J. Chem. Soc., Perkin Trans. 1 1999, 1003. (h) Paterson, I.;
Donghi, M.; Gerlach, K. Angew. Chem., Int. Ed. 2000, 39, 3315. (i) Paterson,
I.; Temal-laib, T. Org. Lett. 2002, 4, 2473.
(7) (a) Wang, X.; Parlow, J. J.; Porco, J. A., Jr. Org. Lett. 2000, 2, 3509.
(b) Lan, P.; Berta, D.; Porco, J. A., Jr.; South, M. S.; Parlow, J. J. J. Org.
Chem. 2003, 68, 9678. (c) Lan, P.; Porco, J. A., Jr.; South, M. S.; Parlow,
J. J. J. Comb. Chem. 2003, 5, 660. (d) Andrews, S. P.; Ladlow, M. J. Org.
Chem. 2003, 68, 5525. (e) Lei, X.; Porco, J. A., Jr. Org. Lett. 2004, 6, 795.
(f) Li, X.; Abell, C.; Congreve, M. S.; Warrington, B. H.; Ladlow, M. Org.
Biomol. Chem. 2004, 2, 989.
(8) For resin-capture-release involving a resin-bound chiral auxiliary,
see: Kerrigan, N, J.; Hutchinson, P. C.; Heightman, T, D.; Procter, D, J.
Chem. Commun. 2003, 1402.
(9) (a) Panek, J. S.; Xu, F. J. Am. Chem. Soc. 1995, 117, 10587. (b)
Beresis, R. T. Ph.D. Thesis, Boston University, 1997; Chapter II. (c) Jain,
N. F.; Takenake N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118, 12475. (d)
Jain, N. F.; Cirillo, P. F.; Pelletier, R.; Panek, J. S. Tetrahedron Lett. 1995,
36, 8727.
(10) Prepared from the corresponding (R)- and (S)-crotylsilane methyl
esters using microwave-mediated transesterification with 3-(anthracen-10-
yl)propan-1-ol.7e See Supporting Information for experimental details. For
preparation of the crotylsilanes, see: (a) Panek, J. S.; Yang. M. G.; Solomon,
J. S. J. Org. Chem. 1993, 58, 1003. (b) Beresis, R. T.; Solomon, J. S.;
Yang, M. J.; Jain, N. F.; Panek, J. S. Org. Synth. 1997, 75, 78. (c) Jain, N.
F.; Cirillo, P. F.; Pelletier, R.; Panek, J. S. Tetrahedron Lett. 1995, 36,
8727.
(11) See Supporting Information for complete experimental details.
(12) (a) Frechet, J. M.; Schuerch, C. Carbohydr. Res. 1972, 22, 399. (b)
Sylvain, C.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 1997, 38, 1043.
(13) Diastereomeric ratios (dr’s) were determined by 1H NMR analysis
(400 MHz).
(14) (a) Taylor, E. C.; Chiang, C.-S. Synthesis 1977, 467. (b) Nikalje,
M. D.; Phukan, P.; Sudalai, A. Org. Prep. Proc. Int. 2000, 32, 1.
4436
Org. Lett., Vol. 7, No. 20, 2005