C O M M U N I C A T I O N S
Table 2. Substrate Scopea
Catalyst turnover was increased by the addition of MeOH, and the
system was further improved based on the structure of the complex
of silver and ligand. The allylation uniformly provided optically
active syn isomers. Detailed mechanisms of this reaction including
allylation from racemic allylsilane are now under investigation.
Acknowledgment. Support of this research was provided by
SORST project of Japan Science and Technology Agency (JST).
We thank Takasago International Corporation for its generous gift
of (R)-SEGPHOS.
entry
ketone
product
yield, %
ee, %b
1
2
3
4
5
6
7
8
9
10
11
12
13
14c
1b
1c
1d
1e
1f
1g
1h
1i
1j
1k
1l
1m
1n
1o
3ba
3ca
3da
3ea
92
63
62
98
42
89
63
78
74
97
92
92
96
56
90
78
92
95
65
91
93
92
92
96
96
94
84
95
Supporting Information Available: Experimental procedures,
spectral data for all new compounds, and characterization data. This
3fa
References
3ga
3ha
3ia
(1) Reviews: Denmark, S. E.; Almstead, N. G. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000;
Chapter 10, p 299. (b) Chemler, S. R.; Roush, W. R. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000;
Chapter 11, p 403.
(2) Reviews: (a) Yanagisawa, A. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, p 965 (b) Denmark S. E.; Fu, J. Chem. ReV. 2003, 103, 2763.
(3) (a) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.;
Matsumoto, Y.; Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 3701.
(b) Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2002, 124, 6536. (c) Wadamoto, M.; Ozasa, N.; Yanagisawa,
A.; Yamamoto, H. J. Org. Chem. 2003, 68, 5593. (d) Harada, T.; Manabe,
K.; Kobayashi, S. Angew. Chem., Int. Ed. 2003, 42, 3927.
3ja
3kad
3lad
3mad
3nad
3oad
a Reaction was conducted with 5 mol % of catalyst, 2.0 equiv of
allyltrimethoxysilane at -78 °C for 12 h under Ar atmosphere. b The ee
value was determined by HPLC or GC. c A quantity of 4.0 equiv of
allyltrimethoxysilane was used. d Only 1,2-adduct was observed.
(4) For catalytic enantioselective addition to simple ketones using allylborane,
see: Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2004, 126, 8910.
Table 3. Catalytic Diastereo- and Enantioselective Allylationa
(5) For selected examples of catalytic enantioselective addition to simple
ketones using allyltin, see: (a) Casolari, S.; D’Addario, D.; Tagliavine,
E. Org. Lett. 1999, 1, 1061. (b) Cunningham, A.; Woodward, S. Synthesis
2002, 43. (c) Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, G.
D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 12580. (d) Kii, S.; Maruoka,
K. Chirality 2003, 15, 67. (e) Teo, Y.-C.; Goh, J.-D.; Loh, T.-P. Org.
Lett. 2005, 7, 2743.
(6) Selected examples of catalytic enantioselective addition of other nucleo-
philes to simple ketones: (a) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc.
1998, 120, 445. (b) Yabu, K.; Masumoto, S.; Yamasaki, S.; Hamashima,
Y.; Kanai, M.; Du, W.; Curran, D. P.; Shibasaki, M. J. Am. Chem. Soc.
2001, 123, 9908. (c) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002,
124, 4233. (d) Jeon, S.-J.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125,
9544. (e) Moreau, X.; Bazan-Tejeda, B.; Campagne, J.-M. J. Am. Chem.
Soc. 2005, 127, 7288.
entry
allylsilane
yield %
syn/antib
ee, %c
(7) (a) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am.
Chem. Soc. 1996, 118, 4723. (b) Momiyama, N.; Yamamoto, H. J. Am.
Chem. Soc. 2004, 126, 5360.
(8) (a) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124,
13400. (b) Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2004, 126, 3734. (c) Yanagisawa, A.; Touge, T.; Arai, T.
Angew. Chem., Int. Ed. 2005, 44, 1546.
1
2
2b R1 ) Me, R2 ) H
2c R1 ) H, R2 ) Me
2d n ) 1
60
95
72
74e
97
90/10
90/10
96/4
96/4
>99/1
95
93
98
99
98
3
4d
5
2d n ) 1
2e n ) 3
(9) A similar mechanism was proposed by: Kobayashi, S.; Kiyohara, H.;
Nakamura, Y.; Matsubara, R. J. Am. Chem. Soc. 2004, 126, 6558.
(10) Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
Champion, N.; Dellis, P. Angew. Chem., Int. Ed. 2004, 43, 320.
(11) The active species is not clear in this reaction, because minor complexes
are able to dominate a reaction.
a Reaction was conducted with 5 mol % of catalyst, 3.0 equiv of
allylsilane at -40 °C for 36 h under Ar atmosphere. c Diastereomer ratio
was determined by 1H NMR. b The ee value was determined by HPLC.
c Major isomer. d A quantity of 0.5 equiv of allylsilane was used. e Deter-
mined from allylsilane.
(12) Yasuda, M.; Hirata, K.; Nishino, M.; Yamamoto, A.; Baba, A. J. Am.
Chem. Soc. 2002, 124, 13442.
therefore conclude that allylsilvers rapidly interconvert between two
diastereomeric complexes (eq 1).13
In summary, we have developed a new AgF catalyst and
demonstrated high enantioselective allylation of simple ketones.
(13) (a) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921 (b) Zanoni,
G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew.
Chem., Int. Ed. 2004, 43, 846.
JA0553351
9
J. AM. CHEM. SOC. VOL. 127, NO. 42, 2005 14557