Published on Web 09/23/2005
Naked (C5Me5)2M Cations (M ) Sc, Ti, and V) and Their
Fluoroarene Complexes
Marco W. Bouwkamp,† Peter H. M. Budzelaar,‡,| Jeroen Gercama,†
Isabel Del Hierro Morales,† Jeanette de Wolf,† Auke Meetsma,† Sergei I. Troyanov,§
Jan H. Teuben,† and Bart Hessen*,†
Contribution from the Center for Catalytic Olefin Polymerization, Stratingh Institute for
Chemistry and Chemical Engineering, UniVersity of Groningen, Nijenborgh 4,
9747 AG, Groningen, The Netherlands, Molecular Materials, Radboud UniVersity Nijmegen,
P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands, and Department of Chemistry, Moscow
State UniVersity, VorobjoVy Gory, 119899 Moscow, Russia
Received July 20, 2005; E-mail: B.Hessen@chem.rug.nl
Abstract: The ionic metallocene complexes [Cp*2M][BPh4] (Cp* ) C5Me5) of the trivalent 3d metals Sc,
Ti, and V were synthesized and structurally characterized. For M ) Sc, the anion interacts weakly with the
metal center through one of the phenyl groups, but for M ) Ti and V, the cations are naked. They each
contain one strongly distorted Cp* ligand, with one (V) or two (Ti) agostic C-H‚‚‚M interactions involving
the Cp*Me groups. For Sc and Ti, these Lewis acidic species react with fluorobenzene and 1,2-
difluorobenzene to yield [Cp*2M(κF-FC6H5)n][BPh4] (M ) Sc, n ) 2; M ) Ti, n ) 1) and [Cp*2M(κ2F-1,2-
F2C6H4)][BPh4], the first examples of κF-fluorobenzene and κ2F-1,2-difluorobenzene adducts of transition
metals. With the perfluorinated anion [B(C6F5)4]-, both Sc and Ti form [Cp*2M(κ2F-C6F5)B(C6F5)3] contact
ion pairs. The nature of the metal-fluoroarene interaction was studied by density functional theory (DFT)
calculations and by comparison with the corresponding tetrahydrofuran (THF) adducts and was found to
be predominantly electrostatic for all metals studied.
Introduction
nucleophilic anions used in conjunction with (often highly
electron deficient) cationic transition-metal catalysts. This is
As a result of the relative inertness of the C-F bond1 and
the high electronegativity of fluorine,2 and the fact that the radius
of fluorine is not much larger than that of hydrogen,3 fluorinated
groups are widely applied in transition-metal-based homoge-
neous catalysis. They can be used as substituents on the ancillary
ligand set, for example, to modify the electronic properties of
the metal center4 or the solubility of the catalyst.5 Another
important application of fluorinated moieties is found in weakly
particularly important in catalytic olefin polymerization,6 where
the counterion can strongly influence catalyst productivity and
selectivity.7,8
Despite their importance to catalysis, interactions of fluori-
nated groups with highly electrophilic transition-metal centers9
have not been studied in a systematic fashion, and structurally
characterized examples of transition-metal complexes with direct
C-F‚‚‚M interactions involve either intramolecular interactions,
where the fluorinated group forms an integral part of the ligand
system,10 or the closest contacts between a cationic transition-
metal complex and its fluorinated organoborate counterion.11
In this paper, we describe a combined experimental and
† University of Groningen.
‡ Radboud University Nijmegen.
| Current address: Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada.
§ Moscow State University.
(1) Eggar, K. W.; Cocks, A. T. HelV. Chim. Acta 1973, 56, 1516.
(2) The electronegativity of fluorine on the Pauling scale: 3.98. The Nature
of the Chemical Bond and the Structure of Molecules and Crystals: an
Introduction to Modern Structural Chemistry; Pauling, L., Ed.; Cornell
University Press: Ithaca, NY, 1960.
(3) . Handbook of Chemistry and Physics, 80th edition; Lide, D. R., Ed.; CRC
Press: Boca Raton, FL, 1999-2000.
(4) (a) Tsukahara, T.; Swenson, D. C.; Jordan, R. F. Organometallics 1997,
16, 3303. (b) Brussee, E. A. C.; Meetsma, A.; Hessen, B.; Teuben, J. H.
Chem. Commun. 2000, 497. (c) Saito, J.; Mitani, M.; Onda, M.; Mohri,
J.-I.; Ishii, S.-I.; Yoshida, Y.; Nakano, T.; Tanaka, H.; Matsugi, T.; Kojoh,
S.-I.; Kashiwa, N.; Fujita, T. Macromol. Rapid Commun. 2001, 22, 1072.
(d) Mitani, M.; Mohri, J.-I.; Yoshida, Y.; Saito, J.; Ishii, S.; Tsuru, K.;
Matsui, S.; Furuyama, R.; Nakano, T.; Tanaka, H.; Kojoh, S.-I.; Matsugi,
T.; Kashiwa, N.; Fujita, T. J. Am. Chem. Soc. 2002, 124, 3327. (e)
Thornberry, M. P.; Reynolds, N. T.; Deck, P. A.; Fronczek, F. R.;
Rheingold, A. L.; Liable-Sands, L. M. Organometallics 2004, 23, 1333.
(5) (a) Horva´th, I. T.; Ra´bai, J. Science 1994, 266, 72. (b) De Wolf, E.; Van
Koten, G.; Deelman, G.-J. Chem. Soc. ReV. 1999, 28, 37. (c) Arthel-Rosa,
L. P.; Gladysz, J. A. Coord. Chem. ReV. 1999, 190-192, 587.
(6) For reviews on catalytic olefin polymerization with transition-metal
complexes see: (a) Mo¨hring, P. C.; Coville, N. J. J. Organomet. Chem.
1994, 479, 1. (b) Brintzinger, H. H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.;
Waymouth, R. M. Angew. Chem., Int. Ed. 1995, 34, 1143. (c) Britovsek,
G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed. 1999, 38, 428.
(d) Coates, G. W. Chem. ReV. 2000, 100, 1223.
(7) (a) Chen, E. Y.-X.; Marks, T. J. Chem. ReV. 2000, 100, 1391. (b) Piers,
W. E.; Irvine, G. J.; Williams, V. C. Eur. J. Inorg. Chem. 2000, 2131. (c)
Pe´deutour, J.-N.; Radhakrishnan, K.; Cramail, G.; Deffieux, A. Macromol.
Rapid Commun. 2001, 22, 1095.
(8) (a) Chen, Y.-X.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 1998, 120, 6287. (b) Metz, M. V.; Schwartz, D. J.; Stern, C.
L.; Marks, T. J.; Nickias, P. N. Organometallics 2002, 21, 4159.
(9) (a) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. ReV. 1990, 99, 89. (b)
Plenio, H. Chem. ReV. 1997, 97, 3363.
(10) (a) Siedle, A. R.; Newmark, R. A.; Lamanna, W. M.; Huffman, J. C.
Organometallics 1993, 12, 1491. (b) Burlakov, V. V.; Pellny, P.-M.; Arndt,
P.; Baumann, W.; Spannenberg, A.; Shur, V. B.; Rosenthal, U. Chem.
Commun. 2000, 241.
9
14310
J. AM. CHEM. SOC. 2005, 127, 14310-14319
10.1021/ja054544i CCC: $30.25 © 2005 American Chemical Society