C O M M U N I C A T I O N S
a larger optical rotation value, was also conducted.23 Thus, selective
protection of the pyridine hydroxyl of 1 as its pivolate ester 25
(PivCl, HSO4NBu4, aqueous 5 N NaOH-CH2Cl2, 25 °C, 92%),
followed by O-methylation of the secondary alcohol 25 (NaH, MeI,
DMF, 25 °C, 1 h, 78%), and finally pivolate hydrolysis of 26 (t-
BuONa, MeOH, 60 °C, 3 h, 88%) provided 2. Synthetic piericidin
B1 proved to be identical in all respects with properties reported
Scheme 2. Synthesis of 17
25
for natural 2, including its optical rotation ([R]D -7.3 (c 0.2,
Scheme 3. Synthesis of Piericidin A1 and B1
18
MeOH) vs lit23 [R]D -6.5 (c 3.2, MeOH)), thereby further
confirming the absolute configuration assignment for 1 and 2.
Throughout these studies and the handling of 1, 2, 12, 13, 14,
and 24, only the 4-hydroxypyridine tautomer, and not the 4-pyridone
tautomer, was observed even in protic solvents. Provocatively, this
suggests that the ability of 1 to bind and inhibit NADH-ubiquinone
reductase (complex I) may result from mimicry of reduced
coenzyme Q (hydroquinone) and rather than 3 itself. The synthesis
of a series of analogues based on the natural products are underway
and will probe such questions.
Acknowledgment. We gratefully acknowledge the financial
support of the National Institutes of Health (CA 42056), and the
Skaggs Institute for Chemical Biology. M.J.S. is a Skaggs Fellow.
Supporting Information Available: Full experimental details. This
References
(1) Takahashi, N.; Suzuki, A.; Tamura, S. J. Am. Chem. Soc. 1965, 87, 2066.
(2) Esposti, M. D. Biochim. Biophys. Acta 1998, 1364, 222.
(3) Friedrich, T.; Van Heek, P.; Leif, H.; Ohnishi, T.; Forche, E.; Kunze, B.;
Jansen, R.; Trowitzsch-Kienast, W.; Hofle, G.; Reichenbach, H.; Weiss,
H. Eur. J. Biochem. 1994, 219, 691.
(4) Okun, J. G.; Lummen, P.; Brandt, U. J. Biol. Chem. 1999, 274, 2625.
(5) Schmidtchen, F. P.; Rapoport, H. J. Am. Chem. Soc. 1977, 99, 7014.
(6) Cox, C. M.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1991, 1901.
(7) Takahashi, N.; Suzuki, A.; Kimura, Y.; Miyamoto, S.; Tamura, S.
Tetrahedron Lett. 1967, 8, 1961.
PPh3, THF, 0 °C, 30 min, 71%) to provide thioether 16, which
was cleanly oxidized to the sulfone 17 with ammonium molybdate
(H2O2, EtOH-THF, 25 °C, 6 h, 89%) (Scheme 2).19 To address
limitations in the reported synthesis of 18 (diastereomer separation),6
a recently disclosed and more effective asymmetric anti-aldol
reaction was employed to access aldehyde 18,20 which was
converted to alcohol 20 as described6 and oxidized under Swern
conditions to give 21 ((COCl)2, DMSO, -78 °C, 99%) (Scheme
3). A modified Julia coupling between 17 and 21 cleanly provided
22 (KHMDS, DME, -78 °C, 18 h, 60%) with the trans alkene
isomer as the only detected product. Lithium-halogen exchange
of the vinyl iodide 22 upon treatment with n-BuLi followed by
treatment of the vinyllithium with tribuyltin chloride provided the
vinyl stannane 23 for the Stille coupling with 14.
(8) Yoshida, S.; Shiraishi, S.; Fujita, K.; Takahashi, N. Tetrahedron Lett. 1975,
16, 1863.
(9) Jansen, R.; Hofle, G. Tetrahedron Lett. 1983, 24, 5485.
(10) (a) Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55,
2999. (b) Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. J.
Am. Chem. Soc. 1991, 113, 1713. Reviews: (c) Boger, D. L. Tetrahedron
1983, 39, 2869. (d) Boger, D. L. Chem. ReV. 1986, 86, 781. (e) Boger,
D. L. Chemtracts: Org. Chem. 1996, 9, 149.
(11) Scheeren, J. W.; Staps, R. J. F. M.; Nivard, R. J. F. Recl. TraV. Chim.
1973, 92, 11.
(12) (a) Boger, D. L.; Cassidy, K. C.; Nakahara, S. J. Am. Chem. Soc. 1993,
115, 10733. (b) Boger, D. L.; Hu¨ter, O.; Mbiya, K.; Zhang, M. J. Am.
Chem. Soc. 1995, 117, 11839. (c) Boger, D. L.; Hong, J. J. Am. Chem.
Soc. 1998, 120, 1218. (d) Boger, D. L.; Blagg, B. S. J. Tetrahedron 2002,
58, 6343.
(13) Rambaud, M.; Bakasse, M.; Duguay, G.; Villieras, J. Synthesis 1988, 564.
(14) Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin Trans.
2 1978, 822.
(15) Trecourt, F.; Mallet, M.; Mongin, F.; Queguiner, G. J. Org. Chem. 1994,
59, 6173.
Coupling of 14 with 23 was found to require elevated temper-
atures, high loadings of the Pd2(dba)3/(tBu)3P catalyst system
employed by Fu,21 and LiCl as an additive to achieve good
conversions, and when applied to the coupling, provided 24 in
superb conversions (Pd2(dba)3, (tBu)3P, LiCl, dioxane, 70 °C, 18
h, 74%) without protection of the pyridyl phenol. A final depro-
tection of the TBS ether 24 (Bu4NF, THF, 50 °C, 12 h, 93%)
provided piericidin A1 identical in all respects with properties
reported for the natural product (Scheme 3). This included the sign
(16) Wright, A.; West, R. J. Am. Chem. Soc. 1974, 96, 3214. See Supporting
Information for the isolation, structure, and characterization of S1.
(17) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998,
26.
(18) Ndibwani, A.; Lamothe, S.; Guay, D.; Plante, R.; Soucy, P.; Goldstein,
S.; Deslongchamps, P. Can. J. Chem. 1993, 71, 695.
(19) Ahmed, A.; Hoegenauer, E. K.; Enev, V. S.; Hanbauer, M.; Kaehlig, H.;
Ohler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026.
(20) Nakao, Y.; Yoshida, W. Y.; Takada, Y.; Kimura, J.; Yang, L.; Mooberry,
S. L.; Scheuer, P. J. J. Nat. Prod. 2004, 67, 1332.
25
(21) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343.
(22) Urakawa, A.; Sasaki, T.; Yoshida, K.; Otani, T.; Lei, Y.; Yun, W. J.
Antibiot. 1996, 49, 1052.
and magnitude of the reported optical rotation for 1 ([R]D +1.8
25
(c 0.1, MeOH) vs lit22 [R]D +1.0 (c 0.1, MeOH)). However, the
magnitude of this rotation value was viewed as insufficient to assign
the absolute configuration of 1. To more confidently address this
assignment, the conversion to 1 of piericidin B1 (2), which exhibits
(23) Takahashi, N.; Suzuki, A.; Kimura, Y.; Miyamoto, S.; Tamura, S.; Mitsui,
T.; Fukami, J. Agric. Biol. Chem. 1968, 32, 1115.
JA055041F
9
J. AM. CHEM. SOC. VOL. 127, NO. 45, 2005 15705