D. Kumar et al. / Tetrahedron Letters 52 (2011) 1983–1986
5. Tsuji, K.; Ishikawa, H. Bioorg. Med. Chem. Lett. 1994, 4, 1601.
1985
6. Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.;
Heffner, T. G.; Meltzner, L. T.; Pugsley, T. A. J. Med. Chem. 1990, 33, 311.
7. Fink, B. A.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A.
Chem. Biol. 1999, 6, 205.
8. Gu, X.-H.; Wan, X.-Z.; Jiang, B. Bioorg. Med. Chem. Lett. 1999, 9, 569.
9. Hu, D. J.; Liu, S. F.; Huang, T. H.; Tu, H. Y.; Zhang, A. D. Molecules 2009, 14, 1288.
10. Metwallya, M. A.; Abdel-Latifa, E.; Amera, F. A.; Kauppb, G. J. Sulfur Chem. 2004,
25, 63.
11. Rauhut, T.; Glawischnig, E. Phytochemistry 2009, 70, 1638.
12. Heers, J.; Backx, L. J. J.; Mostmans, J. H.; Van Cutsem, J. J. Med. Chem. 1979, 22,
1003.
13. Tanigawara, Y.; Aoyama, N.; Kita, T.; Shirakawa, K.; Komada, F.; Kasuga, M.;
Okumura, K. Clin. Pharmacol. Ther. 1999, 66, 528.
14. (a) Lo, Y. S.; Nolan, J. C.; Maren, T. H.; Welstead, W. J., Jr.; Gripshover, D. F.;
Shamblee, D. A. J. Med. Chem. 1992, 35, 4790; (b) Bhat, N. R.; Zhang, P. S.;
Mohanty, S. B. Neurochem. Res. 2007, 32, 293.
15. Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull. 1996, 44, 1831.
16. (a) Breslow, R.; Maitra, U. Tetrahedron Lett. 1984, 25, 1239; (b) Breslow, R.;
Maitra, U.; Ride out, D. Tetrahedron Lett. 1983, 24, 1901; (c) Rideout, D. C.;
Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816.
H
H
O
δ
δ
O
H
δ
H
O
H
H
δ
δ
δ
O
H
O
δ
H
H
δ
δ
H
H
O
H
δ
H
X
H
R
δ
H
Ar
O
N
O
Ar
H
-TsOH
N
TsO
X
R
H
δ
δ
O
H
δ
O
H
Ar
H2O
Ar
N
-H2O
H
N
R
X
R
H
H
X
X = S, NH
17. (a) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302; (b) Chanda, A.; Fokin,
V. V. Chem. Rev. 2009, 109, 725; (c) Polshettiwar, V.; Varma, R. S. Green Chem.
2010, 12, 743; (d) Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8,
2433; (e) Azizi, N.; Saidi, M. R. Org. Lett. 2005, 7, 3649; (f) Azizi, N.; Aryanasab,
F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem. 2006, 71, 3634; (g) Ranu, B.
C.; Banerjee, S. Tetrahedron Lett. 2007, 48, 141.
18. (a) Virkutyte, J.; Baruwati, B.; Varma, R. S. Nano Scale 2010, 2, 1109; (b)
Polshettiwar, V.; Varma, R. S. Tetrahedron 2010, 66, 1091; (c) Polshettiwar, V.;
Varma, R. S. Chem. Soc. Rev. 2008, 37, 1546.
Figure 1. Proposed water mediated construction of diarylazoles 3 and 4.
Reported protocols are plagued by poor yields and require-
ments of higher temperatures. We report the formation of diary-
limidazoles 4 by reacting a-tosyloxyketones 1 with amidines 2 in
benign solvent, water. Our initial attempts to achieve this conden-
sation reaction in aqueous medium were unsuccessful at room
temperature. However, reactions proceeded smoothly at 80 °C
and further increase of temperature resulted only in the formation
of undesired products. Syntheses of diarylimidazoles were also
investigated in different organic solvents, such as THF, CHCl3, and
DMF (Table 1). Under similar reaction conditions in organic sol-
vents poor yields and prolonged reaction timings were observed.
We have synthesized a library of diarylimidazoles 4 (Table 2) using
the optimized reaction conditions. Reaction of pyridylamidine with
19. (a) Ju, Y.; Varma, R. S. Tetrahedron Lett. 2005, 46, 6011; (b) Kumar, D.; Reddy, V.
B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Tetrahedron 2007,
63, 3093; (c) Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron Lett.
2008, 49, 6974; (d) Kumar, D.; Reddy, V. B.; Varma, R. S. Tetrahedron Lett. 2009,
50, 2065.
20. Hantzsch, A.; Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20, 3118.
21. (a) Bailey, N.; Dean, A. W.; Judd, D. B.; Middlemiss, D.; Storer, R.; Stephen, P. W.
Bioorg. Med. Chem. Lett. 1996, 6, 1409; (b) Kearney, P. C.; Fernandez, M.;
Flygare, J. A. J. Org. Chem. 1998, 62, 196.
22. (a) Zhu, D.; Chen, J.; Xiao, H.; Liu, M.; Ding, J.; Wu, H. Synth. Commun. 2009, 39,
2895; (b) Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. Tetrahedron 2007, 63,
11066.
23. Varma, R. S.; Kumar, D.; Liesen, P. J. J. Chem. Soc., Perkin Trans. 1 1998, 4093.
24. Das, B.; Saidi Reddy, V.; Ramu, R. J. Mol. Catal. A: Chem. 2006, 252, 235.
25. Narender, M.; Reddy, M. S.; Sridhar, R.; Nageswar, Y. V. D.; Rao, K. R.
Tetrahedron Lett. 2005, 46, 5953.
26. Kabalka, G. W.; Mereddy, A. R. Tetrahedron Lett. 2006, 47, 5171.
27. Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem.
1982, 47, 2487.
28. (a) Quideau, S.; Wirth, T. Tetrahedron 2010, 66, 5737; (b) Kumar, D.; Sundaree,
S.; Patel, G.; Rao, V. S. Tetrahedron Lett. 2008, 49, 867; (c) Kumar, D.; Kumar, N.
M.; Sundaree, S.; Johnson, E. O.; Shah, K. Eur. J. Med. Chem. 2010, 45, 1244; (d)
Kumar, D.; Reddy, V. B. Synthesis 2010, 1687.
a-tosyloxyketones having electron-donating groups resulted in
lower yields. Over all, yields are lower in case of diarylimidazoles
as compared to diarylthiazoles, possibly due to the enhanced
nucleophilicity of sulfur in thioamides when compared to nitrogen
amidines. All the synthesized compounds were characterized by IR,
1H NMR and Mass spectral data.31
In conclusion, we have developed a simple and greener ap-
proach for the synthesis of bioactive molecules, diarylthiazoles
and diarylimidazoles in good yields. Protocol is highly efficient
and facile in water as solvent and reaction promoter. The advan-
tages of the reaction conditions include no metal reagents, avoid-
ance of toxic, volatile, and corrosive organic solvents and the
relative ease of safe experimental procedures. This method is a
useful and attractive strategy to generate a diverse array of bioac-
tive thiazoles and imidazoles under eco-friendly conditions.
29. Zhang, P.; Chen, Z. Synth. Commun. 2001, 31, 415.
30. Manaka, A.; Sato, M. Synth. Commun. 2005, 35, 761.
31. General experimental procedure: To a stirred solution of aryl thioamide or
amidine (1 mmol) in 5 mL distilled water was added
a-tosyloxyketone
(1 mmol) and the reaction mixture stirred at 60 °C or 80 °C till completion.
Progress of the reaction was monitored by thin layer chromatography. After
completion of the reaction, product was readily filtered and recrystallized
from ethanol (3a–k, 3p–o and 4a–e). In some cases (3l–m and 4f–i) product
was extracted with dichloromethane (25 mL), washed with brine (25 mL),
the organic layers were combined, dried over anhydrous Na2SO4 and
distilled off in vacuum. The residue so obtained was purified by column
chromatography on silica gel (100–200 mesh) (EtOAc/Hexane) to give pure
product. Analytical data for some representative compounds. 3f: Off-white
Acknowledgments
solid; IR (KBr): 3132, 1595;1539, 1435, 1340, 734, 679 cmÀ1
;
1H NMR
Authors acknowledge financial support from UGC-SAP (level-1),
New Delhi and M.K. is thankful to the Council of Scientific and
Industrial Research, New Delhi for Senior Research Fellowship.
(400 MHz, CDCl3): d 11.80 (s, 1H), 8.34–8.31 (m, 1H), 8.16 (d, J = 2.8 Hz, 1H),
8.09 (d, J = 8.03, 1H), 7.94 (s, 1H), 7.52–7.47 (m, 3H), 7.26–7.21 (m, 2H), 7.13
(d, J = 7.8 Hz, 2H); MS (FAB) m/z calculated for
observed 276.30. 3h: Pale yellow solid; IR (KBr): 3032, 1623, 1580, 1484,
1325, 734 cmÀ1 1H NMR (400 MHz, CDCl3): d 8.28 (s, 1H), 7.97–7.94 (m,
2H), 7.74 (s, 1H), 7.40–7.36 (m, 3H), 7.26–7.16 (m, 4H), 3.74 (s, 3H); MS
(FAB) m/z calculated for
18H14N2S (M+H)+ 291.10, observed 291.0. 3q:
White solid; IR (KBr): 3145, 1650, 1426, 1380, 690 cmÀ1 1H NMR (400 MHz,
C
17H12N2S (M)+ 276.07,
;
References and notes
C
;
1. Benazzouz, A.; Boraud, T.; Dubedat, P.; Boireau, A.; Stutzmann, J.-M.; Gross, C.
Eur. J. Pharmacol. 1995, 284.
2. Liberatore, A.-M.; Schultz, J.; Favre-Guilmard, C.; Pommier, J.; Chabrièr, P. E.;
Bigg, D. Bioorg. Med. Chem. Lett. 2007, 17, 1746.
3. (a) Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.;
Schmidt, S. P.; Holms, J. H.; Young, P. R.; Carter, G. W. J. Med. Chem. 1988, 31,
1719; (b) Clemence, F.; Marter, O. L.; Delevalle, F.; Benzoni, J.; Jouanen, A.;
Jouquey, S.; Mouren, M.; Deraedt, R. J. Med. Chem. 1988, 31, 1453.
4. Bell, F. W.; Cantrell, A. S.; Hogberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordon,
C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M., Jr.; Nore´en, R.; O berg, B.; Palkowitz, J.
A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.;
West, S. J.; Zhang, H.; Zhou, X.-X. J. Med. Chem. 1995, 38, 4929.
CDCl3): d 11.79 (s, 1H), 8.31–8.33 (m, 1H), 8.16 (d, J = 2.8 Hz, 1H), 8.13–8.09
(m, 1H), 8.00 (s, 1H), 7.59–7.47 (m, 2H), 7.27–7.21 (m, 2H), 7.12 (d,
J = 7.8 Hz, 2H); MS (FAB) m/z calculated for
observed 310.06. 3r: Off-white solid; IR (KBr) 3130, 1625, 1460, 1176,
979, 688 cmÀ1 1H NMR (400 MHz, CDCl3): d 8.09 (s, 1H), 8.05 (d, J = 9.1 Hz,
C
17H11ClN2S (M)+ 310.03,
;
1H), 7.98–8.01 (m, 3H), 7.87 (d, J = 3.4 Hz, 1H), 7.89 (s, 1H), 7.48–7.38 (m,
5H), 7.37 (s, 1H), 7.32–7.28 (m, 3H); MS (FAB) m/z calculated for
C
23H16N2O2S2 (M+Na)+ 439.05, observed 439.1. 4f: White solid; IR (KBr)
3213, 1607, 1534, 1488, 1315, 692 cmÀ1 1H NMR (400 MHz, CDCl3): d 8.06–
;
8.01 (m, 2H), 7.94 (d, J = 8.7 Hz, 2H), 7.47–7.40 (m, 4H), 7.34–7.30 (m, 2H),
MS (FAB) m/z calculated for C14H10ClN3 (M+H)+ 256.06, observed 255.8. 4g: