2514
C. L. Moody et al. / Tetrahedron Letters 52 (2011) 2511–2514
2846; (c) Jones, P.; Knochel, P. J. Org. Chem. 1999, 64, 186; (d) Tada, M.;
O
O
DBU, Et O
2
Hiratsuka, M.; Goto, H. J. Org. Chem. 1990, 55, 4364; (e) Felpin, F.-X.; Bertrand,
M.-J.; Lebreton, J. Tetrahedron 2002, 58, 7381; (f) Jiang, D.; Peng, J.; Chen, Y. Org.
Lett. 2008, 10, 1695.
24 h, 96%
E- only
5. For an elegant ruthenium-catalysed procedure for converting alcohols into b,c-
MeO
MeO
unsaturated ketones, see: (a) Omura, S.; Fukuyama, T.; Horiguchi, J.; Murakami,
Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094; (b) Shibahara, F.; Bower, J. F.;
Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120.
12
25
6. For other recent methods for the conversion of alcohols into homologated
allylic alcohols and b,c-unsaturated ketones, see: (a) Zhang, L.; Zha, Z.; Zhang,
Z.; Li, Y.; Wang, Z. Chem. Commun. 2010, 46, 7196; (b) Nomura, K.; Matsubara, S.
Synlett 2008, 1412.
O
O
DBU, Et O
2
24 h, 87%
7. Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851. and
references cited therein.
8. Foster, C. E.; Mackie, P. R. Chapter 3.05 in Ref. 1.
E- only
S
S
9. All known compounds were characterised spectroscopically (comparison to
literature data) and by mp. comparison when available; novel compounds were
fully characterised.
26
20
10. For excellent reviews, see: (a) Denmark, S. E.; Almstead, N. G. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000. Chapter 10; (b)
Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-
VCH: Weinheim, 2000. Chapter 11; (c) Yamamoto, Y.; Asao, N. Chem. Rev. 1993,
93, 2207.
11. Aspinall, H. C.; Browning, A. F.; Greeves, N.; Ravenscroft, P. Tetrahedron Lett.
1994, 35, 4639.
12. Batey, R. A.; Thadani, A. N.; Smil, D. V. Tetrahedron Lett. 1999, 40, 4289.
13. Nowrouzi, F.; Thadani, A. N.; Batey, R. A. Org. Lett. 2009, 11, 2631.
14. Pyridinium chlorochromate was also successful in this oxidation reaction.
15. Representative experimental procedure: Galactopyranose derivative 24: To
O
O
O
O
DBU, Et O
2
O
O
24 h, 70%
O
O
O
O
Me
Me
Me
Me
E:Z > 20:1
O
O
Me
Me
Me
Me
27
24
Scheme 4.
1,2:3,4-di-O-isopropylidene-D-galactopyranose (23) (64 mg, 0.25 mmol) in
unactivated carbohydrate example. In three examples, base-medi-
ated isomerisation to produce the corresponding ,b-unsaturated
ketones has been carried out. We are currently applying this
sequence to more complex systems as part of a natural product
programme.
dry CH2Cl2 (5 mL) at rt under argon was added DMP (209 mg, 0.49 mmol)
and the mixture stirred for 1 h. Montmorillonite K10 (50 mg) was then added
followed by potassium allyl trifluoroborate (73 mg, 0.49 mmol) and the
mixture stirred for 1 h before adding a further portion of DMP (261 mg,
0.62 mmol). After stirring for a further 1 h, the reaction was quenched with sat.
aq NaHCO3 (5 mL) and sat. aq Na2S2O3 (5 mL) and allowed to stir for 1 h before
diluting with brine (10 mL) and CH2Cl2 (10 mL). The mixture was filtered and
then the layers separated. The aqueous portion was further extracted with
CH2Cl2 (2 Â 5 mL) and the combined organic extracts dried (Na2SO4) and
concentrated in vacuo. The residue was purified by silica gel chromatography
(0–5% acetone in CH2Cl2) to give the compound 24 (55 mg, 75%) as a colourless
micro-crystalline solid, mp 47–49 °C; Rf (CH2Cl2) = 0.15; vmax/cmÀ1 (thin film)
a
Acknowledgements
The authors thank the EPSRC for Ph.D. project studentship fund-
ing (D.S.P., EP/03456X/1), and the University of York and Elsevier
for additional studentship funding (C.L.M.).
2988, 2936, 1723 (C@O), 1383; [a]D À144 (c 0.4, CH2Cl2); dH (400 MHz, CDCl3)
5.97 (1H, ddt, J = 17.0, 10.5, 7.0, H-8), 5.64 (1H, d, J = 5.0, H-1), 5.20–5.08 (2H,
m, H-9), 4.63 (1H, dd, J = 8.0, 2.5, H-3), 4.56 (1H, dd, J = 8.0, 2.0, H-4), 4.35 (1H,
dd, J = 5.0, 2.5, H-2), 4.22 (1H, d, J = 2.0, H-5), 3.50 (1H, ddt, J = 18.5, 7.0, 1.5, H-
7a), 3.33 (1H, ddt, J = 18.5, 7.0, 1.5, H-7b), 1.49 (3H, s), 1.44 (3H, s), 1.33 (3H, s),
1.30 (3H, s); dC (100 MHz, CDCl3) 207.2 (C-6), 130.0 (C-8), 118.7 (C-9), 109.6,
109.0, 96.4 (C-1), 73.5 (C-5), 72.3 (C-4), 70.6 (C-3), 70.4 (C-2), 44.6 (C-7), 25.9,
25.8, 24.8, 24.2; m/z (ESI) 321 [M+Na]+; [HRMS (ESI): Calcd for C15H22NaO6,
321.1309. Found: [M+Na]+, 321.1317 (À2.7 ppm error)]; [C15H22O6 requires C,
60.39; H, 7.43. Found C, 60.35; H, 7.35].
References and notes
1. Comprehensive Organic Functional Group Transformations II; Katritzky, A. R.,
Taylor, R. J. K., Eds.; Elsevier, 2005.
2. Lee, A. S.-Y.; Lin, L.-S. Tetrahedron Lett. 2000, 41, 8803.
3. Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Parimala, G. Synthesis 2003, 2390.
4. For other procedures, see: (a) Gohain, M.; Gogoi, B. J.; Prajapati, D.; Sandhu, J. S.
New J. Chem. 2003, 27, 1038; (b) Larock, R. C.; Lu, Y.-D. J. Org. Chem. 1993, 58,
16. Chiu, P.; Wong, S. T. Synth. Commun. 1998, 28, 4513.