172
H. Li et al. / Thermochimica Acta 510 (2010) 168–172
Acknowledgements
[16] X.H. Shu, H. Li, Z. Sun, M.L. Wu, J.X. Ma, J.M. Wang, Q. Wang, Y. Sun, Y.S. Fu, X.Y.
Chen, Q.Y. Kong, J. Liu, Identification of metabolic pattern and bioactive form of
resveratrol in human medulloblastoma cells, Biochem. Pharmacol. 79 (2010)
1516–1525.
The authors are grateful to the National Natural Science Foun-
dation of China (No. 20773059) for financial support.
[17] B. Billack, V. Radkar, C. Adiabouah, In vitro evaluation of the cytotoxic and
antiproliferative properties of resveratrol and several of its analogs, Cell Mol.
Biol. Lett. 13 (2008) 553–569.
[18] V. Bertacche, N. Lorenzi, D. Nava, E. Pini, C. Sinico, Host–guest interaction study
of resveratrol with natural and modified cyclodextrins, J. Incl. Phenom. Macro.
55 (2006) 279–287.
[19] R. Villalonga, R. Cao, A. Fragoso, Supramolecular chemistry of cyclodextrins in
enzyme technology, Chem. Rev. 107 (2007) 3088–3116.
[20] S.H. Gellman, Introduction: molecular recognition, Chem. Rev. 97 (1997)
1231–1734.
[21] N. Li, L. Xu, Thermal analysis of -cyclodextrin/Berberine chloride inclusion
compounds, Thermochim. Acta 499 (2010) 166–170.
References
[1] P. Saiko, A. Szakmary, W. Jaeger, T. Szekeres, Resveratrol and its analogs:
defense against cancer, coronary disease and neurodegenerative maladies or
just a fad? Mutat. Res. 658 (2008) 68–94.
[2] D. Colin, A. Lancon, D. Delmas, G. Lizard, J. Abrossinow, E. Kahn, B. Jannin,
N. Latruffe, Antiproliferative activities of resveratrol and related compounds
in human hepatocyte derived HepG2 cells are associated with biochemi-
cal cell disturbance revealed by fluorescence analyses, Biochimie 90 (2008)
1674–1684.
[22] A. Avci, S. Dönmez,
A novel thermophilic anaerobic bacteria producing
cyclodextrin glycosyltransferase, Process Biochem. 44 (2009) 36–42.
[23] A. Gunaratne, H. Corke, Effect of hydroxypropyl -cyclodextrin on physical
properties and transition parameters of amylose–lipid complexes of native and
acetylated starches, Food Chem. 108 (2008) 14–22.
[3] D. Delmas, B. Jannin, N. Latruffe, Resveratrol: preventing properties against
vascular alterations and ageing, Mol. Nutr. Food Res. 49 (2005) 377–395.
[4] B. Olas, B. Wachowicz, Resveratrol, A phenolic antioxidant with effects on blood
platelet functions, Platelets 16 (2005) 251–260.
[24] F.B. Sousa, A.M.L. Denadai, I.S. Lula, J.F. Lopes, H.F.D. Santos, W.B.D. Almeida,
R.D. Sinisterra, Supramolecular complex of fluoxetine with -cyclodextrin: an
experimental and theoretical study, Int. J. Pharm. 353 (2008) 160–169.
[25] M.B. Jesus, L.M.A. Pinto, L.F. Fraceto, Y. Takahata, A.C.S. Lino, C. Jaime, E. Paula,
Theoretical and experimental study of a praziquantel and -cyclodextrin inclu-
sion complex using molecular mechanic calculations and 1H-nuclear magnetic
resonance, J. Pharm. Biomed. Anal. 41 (2006) 1428–1432.
[26] H.R. Zhang, G. Chen, L. Wang, L. Ding, Y. Tian, W.Q. Jin, H.Q. Zhang, Study on the
inclusion complexes of cyclodextrin and sulphonated azo dyes by electrospray
ionization mass spectrometry, Int. J. Mass Spectrom. 252 (2006) 1–10.
[27] A.C. Illapakurthy, C.M. Wyandt, S.P. Stodghill, Isothermal titration calorime-
try method for determination of cyclodextrin complexation thermodynamics
between artemisinin and naproxen under varying environmental conditions,
Eur. J. Pharm. Biopharm. 59 (2005) 325–332.
[28] I. Jelesarov, H.R. Bosshard, Isothermal titration calorimetry and differential
scanning calorimetry as complementary tools to investigate the energetics of
biomolecular recognition, J. Mol. Recognit. 12 (1999) 3–18.
[29] G.Y. Bai, Y.J. Wang, H.K. Yan, Thermodynamics of interaction between cationic
Gemini surfactants and hydrophobically modified polymers in aqueous solu-
tions, J. Phys. Chem. B 106 (2002) 2153–2159.
[5] C.S. Yang, J.M. Landau, M.T. Huang, H.L. Newmark, Inhibition of carcinogenesis
by dietary polyphenolic compounds, Annu. Rev. Nutr. 21 (2001) 381–406.
[6] M. Nielsen, R.J. Ruch, O. Vang, Resveratrol reverses tumor-promoter-induced
inhibition of gap-junctional intercellular communication, Biochem. Biophys.
Res. Commun. 275 (2000) 804–808.
[7] V. Krishnan, S.L. Zeichner, Host cell gene expression during human immun-
odeficiency virus type 1 latency and reactivation and effects of targeting
genes that are differentially expressed in viral latency, J. Virol. 78 (2004)
9458–9473.
[8] J.A. Parker, M. Arango, S. Abderrahmane, E. Lambert, C. Tourette, H. Catoire, C.
Neri, Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and
mammalian neurons, Nat. Genet. 37 (2005) 349–350.
[9] C.A. de la Lastra, I. Villegas, Resveratrol as an anti-inflammatory and anti-aging
agent: mechanisms and clinical implications, Mol. Nutr. Food Res. 49 (2005)
405–430.
[10] K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood,
R.E. Zipkin, P. Chung, A. Kisielewski, L.L. Zhang, B. Scherer, D.A. Sinclair,
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan,
Nature 425 (2003) 191–196.
[11] J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu,
J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D.
Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le
Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair,
Resveratrol improves health and survival of mice on a high-calorie diet, Nature
444 (2006) 337–342.
[12] M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin,
N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver,
J. Auwerx, Resveratrol improves mitochondrial function and protects against
metabolic disease by activating SIRT1 and PGC-1alpha, Cell 127 (2006)
1109–1122.
[13] M. Sengottuvelan, K. Deeptha, N. Nalini, Resveratrol ameliorates DNA damage,
prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat
colon carcinogenesis, Chem.–Biol. Interact. 181 (2009) 193–201.
[14] S. Fabris, F. Momo, G. Ravagnan, R. Stevanato, Antioxidant properties of resver-
atrol and piceid on lipid peroxidation in micelles and monolamellar liposomes,
Biophys. Chem. 135 (2008) 76–83.
[30] V. Karlsen, E.B. Heggset, M. Sølie, The use of isothermal titration calorimetry
to determine the thermodynamics of metal ion binding to low-cost sorbents,
Thermochim. Acta 501 (2010) 119–121.
[31] D.Z. Sun, L. Li, X.M. Qiu, F. Liu, B.L. Yin, Isothermal titration calorimetry and 1
H
NMR studies on host–guest interaction of paeonol and two of its isomers with
-cyclodextrin, Int. J. Pharm. 316 (2006) 7–13.
[32] Q. Zhao, X.Y. Xu, X.J. Sun, M. Liu, D.Z. Sun, L.W. Li, A calorimetric study on
interactions of colchicine with human serum albumin, J. Mol. Struct. 931 (2009)
31–34.
[33] V.J. Smith, N.M. Rougier, R.H. de Rossi, M.R. Caira, E.I. Buján, M.A. Fernández, S.A.
Bourne, Investigation of the inclusion of the herbicide metobromuron in native
cyclodextrins by powder X-ray diffraction and isothermal titration calorimetry,
Carbohyd. Res. 344 (2009) 2388–2393.
[34] M. Nilsson, A.J.M. Valente, G. Olofsson, O. Soderman, M. Bonini, Thermodynamic
and kinetic characterization of host–guest association between bolaform sur-
factants and ␣- and -cyclodextrins, J. Phys. Chem. B. 112 (2008) 11310–11316.
[35] T. Loftsson, M. Masson, M.E. Brewster, Self-association of cyclodextrins and
cyclodextrin complexes, Pharm. Sci. 93 (2004) 1091–1099.
[15] B. Fauconneau, P. Waffo-Teguo, F. Huguet, L. Barrier, A. Decendit, J.M. Merillon,
Comparative study of radical scavenger and antioxidant properties of phenolic
compounds from Vitis vinifera cell cultures using in vitro tests, Life Sci. 61 (1997)
2103–2110.
[36] J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem.
Rev. 98 (1998) 1743–1754.