3890
I. Izquierdo et al. / Tetrahedron: Asymmetry 16 (2005) 3887–3891
0
0
0
0
0
0
0
0
(dddd, 1H, J1 a,2 6.1, J1 b,2 7.3, J2 ,3 cis 10.2, J2 ,3 trans
14.4 Hz, H-7a), 1.78–1.63 (m, 3H, H-2a,6a,6b) and
1.50 (ddt, 1H, H-7b); 13C (75 MHz): d 170.90 and
170.80 (CH3CO), 78.38 (C-1), 70.15 (C-7a), 68.09 (C-
8), 63.26 (C-3), 55.19 (C-5), 34.86 (C-2), 30.07 (C-7),
25.31 (C-6), 21.14 and 20.94 (2CH3CO).
17.3 Hz, H-20), 5.18 (dq, 1H, J3 cis,3 trans = J1 a,3 trans
=
=
=
0
0
0
0
J1 b,3 trans = 1.6 Hz, H-30trans), 5.15 (dq, 1H, J1 a,3 cis
0
0
0
0
J1 b,3 cis = 1.3 Hz, H-30cis), 4.69 (q, 1H, J1,1 a = J1,1 b
0
0
0
0
J1,7 = 7.3 Hz, H-1), 3.79 (ddd, 1H, J6a,7 5.2, J6b,7
10.9 Hz, H-7), 3.63 (dt, 1H, J4a,5a = J4a,5b = 8,
J4a,4b = 11.3 Hz, H-4a), 3.16 (ddd, 1H, J4b,5a 9.4, J4b,5b
3.3 Hz, H-4b), 2.58 (m, 1H, H-10a), 2.36 (m, 1H, H-
10b), 2.06 (m, 1H, H-5a), 1.86 (m, 1H, H-5b), 1.76 (m,
1H, H-6a) and 1.49 (dq, 1H, J5a,6b = J5b,6b = J6b,7 = 7.7,
J6a,6b 10.4 Hz, H-6b); 13C (75 MHz): d 161.59 (C-3),
132.33 (C-20), 118.70 (C-30), 75.39 (C-1), 63.24 (C-7),
45.78 (C-4), 34.91 (C-10), 25.18 (C-5) and 25.01 (C-6).
4.5. (1R,3R,7aS)-1-Hydroxy-3-hydroxymethyl-
pyrrolizidine (9)
To a solution of 10 (190 mg, 0.78 mmol) in anhydrous
MeOH (10 ml) was added MeONa/MeOH (2 M,
0.2 ml) and the mixture left at rt for 24 h. TLC (AcOEt)
then revealed the absence of 10 and the presence of a
slower-running compound. The reaction mixture was
concentrated and the residue chromatographed
(CH2Cl2–MeOH–NH4OH 6:2:0.5) to yield 9 as a syrup
4.3. (2S,10R,30S)-N-Benzyloxycarbonyl-2-(30,40-epoxi-10-
hydroxybut-10-yl)pyrrolidine 7
26
26
(100 mg, 82%); ½aꢂD ¼ þ1, ½aꢂ405 ¼ þ1:4 (c 0.8, MeOH).
To a stirred solution of 4 (1.13 g, 4.1 mmol) in anhy-
drous CH2Cl2 (5 ml) was added a solution of MCPBA
(2.12 g, 6.15 mmol) in the same solvent (25 ml). After
24 h TLC (Et2O) revealed the absence of 4 and the pres-
ence of a slower-running product. The reaction mixture
was filtered and the filtrate subsequently washed with
10% aq Na2SO3, 5% aq K2CO3 and brine. The organic
phase was concentrated to a residue that was subjected
IR (neat) 3351 cmꢁ1 (OH). NMR data (300 MHz,
1
0
MeOH-D4): H, d 3.87 (dt, 1H, J1,7a 6.2, J1,2 = J1,2
=
0
8.6 Hz, H-1), 3.57 (dd, 1H, J3,8 5.8, J8,8 10.7 Hz, H-8),
3.51 (dd, 1H, J3,8 5.8 Hz, H-80), 3.24 (dt, 1H, J7,7a 7,
0
J7 ,7a 4.6 Hz, H-7a), 2.91–2.77 (m, 2H, H-5,50), 2.73
0
0
(quin, 1H, J2,3 = J2 ,3 = 6 Hz, H-3), 2.23 (br dt, 1H,
0
0
0
J2,2 12.2 Hz, H-2), 1.88 (dq, 1H, J6,7 = J6 ,7 = 7, J7,7
12.1 Hz, H-7), 1.82–1.63 (m, 3H, H-6,60,70) and 1.58
(br dt, 1H, H-20); 13C (75 MHz): d 77.41 (C-1), 73.17
(C-7a), 67.82 (C-3), 66.70 (C-8), 56.04 (C-5), 39.22 (C-
2), 31.04 (C-7) and 25.74 (C-6). Mass spectrum
(LSIMS): m/z: 157.1099 [M+] for C8H15NO2 157.1103
(deviation +2.2 ppm).
to column chromatography (Et2O) to afford 7 (900 mg,
26
75%) as
a
colourless syrup; ½aꢂD ¼ ꢁ47 (c 0.8,
CHCl3). IR (neat) 3432 (OH), 1699 (CO), 753 and
699 cmꢁ1 (aromatic) NMR data (300 MHz): 1H, d
7.40–7.30 (m, 5H, Ph), 5.19–5.08 (m, 2H, CH2Ph),
4.10–2.45 (6 m, 8H, H-2,5a,5b,10,30,40a,40b,OH) and
2.10–1.90 (m, 6H, H-3a,3b,4a,4b,20a,20b); 13C,
(75 MHz, inter alia) d 136.60, 128.61, 128.19 and 128.00
(Ph), 67.30 (CH2Ph), 63.63 (C-2), 50.75 (C-30), 47.87
and 47.77 (C-40,5), 35.34 (C-20), 27.22 and 24.26 (C-
3,4). Mass spectrum (LSIMS): m/z: 314.1362 [M++Na]
for C16H21NO4Na 314.1368 (deviation +2.0 ppm).
Acknowledgements
The authors are deeply grateful to the Spanish Ministe-
´
rio de Ciencia y Tecnologıa (Project PPQ2002-01303)
´
and Junta de Andalucıa (CVI-250) for their financial
support.
4.4. (1R,3R,7aS)-1-Acetyloxy-3-acetyloxymethyl-
pyrrolizidine 10
Compound 7 (900 mg, 3.1 mmol) in anhydrous MeOH
(20 ml) was hydrogenated under the presence of 10%
Pd–C (80 mg) at 65 psi for 15 h. TLC (MeOH) revealed
no 7 but compounds with very low mobility. The cat-
alyst was filtered off washed with MeOH and the filtrate
and washings concentrated to a residue that was conven-
tionally acetylated in pyridine (1 ml) with Ac2O (1 ml)
and DMAP (50 mg) for 3 h. TLC (MeOH) then showed
a faster-running product. The acetylation reaction was
concentrated to a residue that was dissolved in CH2Cl2
and washed with water. The aqueous phase was basified
with Na2CO3 and extracted with EtAcO. The combined
organic extracts were concentrated and the residue puri-
References
1. Izquierdo, I.; Plaza, M.-T.; Tamayo, J. A. Org. Biomol.
Chem., in press.
2. (a) Asano, N.; Kuroi, H.; Ikeda, K.; Kizu, H.; Kameda,
Y.; Kato, A.; Adachi, I.; Watson, A. A.; Nash, R. J.;
Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1–8; (b)
Yamashita, T.; Yasuda, K.; Kizu, K.; Kameda, Y.;
Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Asano, N.
J. Nat. Prod. 2002, 65, 1875–1881; (c) Asano, N.; Ikeda,
K.; Kasahara, M.; Arai, Y.; Kizu, H. J. Nat. Prod. 2004,
67, 846–850.
3. (a) Izquierdo, I.; Plaza, M.-T.; Robles, R.; Franco, F.
Carbohydr. Res. 2001, 330, 401–408; (b) Izquierdo, I.;
Plaza, M.-T.; Franco, F. Tetrahedron: Asymmetry 2002,
fied by chromatography (EtAcO) to afford pure 10
26
´
13, 1503–1508; (c) Izquierdo, I.; Plaza, M.-T.; Rodrı-
guez, M.; Franco, F.; Martos, A. Tetrahedron, in
press.
(200 mg, 27%) as a colourless syrup; ½aꢂD ¼ ꢁ18 (c
0.4, CHCl3). NMR data (300 MHz): 1H, d 4.83 (dt,
1H, J1,2a = J1,2b = 6.4, J1,7a 4.5 Hz, H-1), 4.00 (d, 2H,
J3,8 6.3 Hz, H-8,8), 3.42 (dt, 1H, J7a,7a = J7b,7a = 7.1 Hz,
H-7a), 2.96 (m, 2H, H-3,5a), 2.65 (dt, 1H, J5a,5b 10.9,
4. Compound 3 has been prepared by oxidation of Cbz-L-
prolinol with: SO3–Py complex: (a) Lee, E.; Li, K.-S.; Lim,
J. Tetrahedron Lett. 1996, 37, 1445–1446; Dei, S.; Bellucci,
C.; Buccioni, M.; Ferraroni, M.; Gualtieri, F.; Guandalini,
L.; Manetti, D.; Matucci, R.; Romanelli, M.-N.; Scapec-
chi, S.; Teodori, E. Bioorg. Med. Chem. 2003, 11, 3153–
J
5b,6a = J5b,6b = 6.4 Hz, H-5b), 2.32 (dt, 1H, J1,2b =
J2b,3 = 6.7, J2a,2b 13.4 Hz, H-2b), 2.02 and 1.99 (2 s,
6H, 2CH3CO), 1.91 (ddt, 1H, J 5.7, J 7.5, J7a,7b