OrPgleanaisce&dBoionmotolaedcjuulsatr Cmhaermgiinstsry
Page 4 of 6
COMMUNICATION
Journal Name
JP16K05780 (for S.S.), JP18H04660 (HybridDCOaI:ta10ly.1s0is39fo/Cr9MOB.Y0.0),41t7hCe
Cooperative Research Program of "Network Joint Research Center
for Materials and Devices" (20181268 for S.S.), and Shorai
Foundation for Science and Technology (for S.S.).
To show additional utility of the present method for the
asymmetric synthesis of 3,3-disubstituted phthalides, we
examined transformations of the bromo groups in optically
active bromolactonization products 2 to form other functional
groups (Scheme 5). The bromo group of 2a was removed via
reduction with tributyltin hydride under radical conditions to
provide 7. Allylation with allyltributyltin was also performed to
obtain 8. Introductions of heteroatom substituents were also
possible via nucleophilic substitutions, and product 9 possessing
a thiophenyl group was synthesized via a reaction with
thiophenol. It is noteworthy that these reactions proceeded
with no loss of enantioselectivity.
Notes and references
1
For reviews on phthalides, see: (a) J. J. Beck and S.-C. Chou, J.
Nat. Prod., 2007, 70, 891; (b) R. Karmakar, P. Pahari and D.
Mal, Chem. Rev., 2014, 114, 6213.
2
For examples of catalytic asymmetric synthesis of chiral
phthalides, see: (a) M. Kitamura, T. Ohkuma, S. Inoue, N. Sayo,
H. Kumobayashi, S. Akutagawa, T. Ohta, H. Takaya and R.
Noyori, J. Am. Chem. Soc., 1988, 110, 629; (b) K. Everaere, J.-
L. Scheffler, A. Mortreux and J.-F. Carpentier, Tetrahedron
Lett., 2001, 42, 1899; (c) J.-G. Lei, R. Hong, S.-G. Yuan and G.-
Q. Lin, Synlett 2002, 927; (d) K. Tanaka, G. Nishida, A. Wada
and K. Noguchi, Angew. Chem., Int. Ed., 2004, 43, 6510; (e) H.-
T. Chang, M. Jeganmohan and C.-H. Cheng, Chem. – Eur. J.,
2007, 13, 4356; (f) K. Tanaka, T. Osaka, K. Noguchi and M.
Hirano, Org. Lett., 2007, 9, 1307; (g) J. Luo, H. Wang, F. Zhong,
J. Kwiatkowski, L.-W. Xu and Y. Lu, Chem. Commun., 2012, 48,
4707; (h) F. Zhong, J. Luo, G.-Y. Chen, X. Dou and Y. Lu, J. Am.
Chem. Soc., 2012, 134, 10222; (i) J. Luo, C. Jiang, H. Wang, L.-
W. Xu and Y. Lu, Tetrahedron Lett., 2013, 54, 5261; (j) J. Luo,
H. Wang, F. Zhong, J. Kwiatkowski, L.-W. Xu and Y. Lu, Chem.
Commun., 2013, 49, 5775; (k) R. Liu, R. Jin, J. An, Q. Zhao, T.
Cheng and G. Liu, Chem. – Asian J., 2014, 9, 1388; (l) L. Kong,
J. Zhao, T. Cheng, J. Lin and G. Liu, ACS Catal., 2016, 6, 2244;
(m) W. Liu, Z.-P. Hu, Y. Yan and W.-W. Liao, Tetrahedron Lett.,
2018, 59, 3132; (n) J. M. Cabrera, J. Tauber and M. J. Krische,
Angew. Chem., Int. Ed., 2018, 57, 1390.
Me
Ph
n-Bu3SnH
AIBN
O
toluene
100 °C, 24 h
O
7
56% (96: 4 er)
Br
Ph
n-Bu3Sn
Ph
O
AIBN
O
benzene
80 °C, 24 h
O
2a
(96: 4 er)
O
8
63% (96: 4 er)
PhS
Ph
PhSH
K2CO3
O
CH3CN
75 °C, 24 h
O
9
3
4
(a) X. Han, C. Dong and H.-B. Zhou, Adv. Synth. Catal., 2014,
356, 1275; (b) D. Parmar, M. S. Maji and M. Rueping, Chem. –
Eur. J., 2014, 20, 83; (c) H. Egami, J. Asada, K. Sato, D.
Hashizume, Y. Kawato and Y. Hamashima, J. Am. Chem. Soc.,
2015, 137, 10132.
94% (96: 4 er)
Scheme 5 Conversions of product 2a.
For examples of synthesis of phthalides via intramolecular
lactonization of alkenes, see: (a) J. Chen, L. Zhou, C. K. Tan and
Y.-Y. Yeung, J. Org. Chem., 2012, 77, 999; (b) S. Hajra, S. M. S.
Akhtar and S. M. Aziz, Chem. Commun., 2014, 50, 6913; (c) S.
Song, X. Li, X. Sun, Y. Yuan and N. Jiao, Green Chem., 2015, 17,
3285; (d) F. Gelat, M. Coffinet, S. Lebrun, F. Agbossou-
Niedercorn, C. Michon and E. Deniau, Tetrahedron:
Asymmetry, 2016, 27, 980; (e) B. N. Hemric, K. Shen and Q.
Wang, J. Am. Chem. Soc., 2016, 138, 5813; (f) E. M. Woerly, S.
M. Banik and E. N. Jacobsen, J. Am. Chem. Soc., 2016, 138,
13858; (g) F. Gelat, S. Lebrun, N. Henry, F. Agbossou-
Niedercorn, C. Michon and E. Deniau, Synlett, 2017, 28, 225.
For reviews on catalytic asymmetric halolactonization, see: (a)
G. Chen and S. Ma, Angew. Chem., Int. Ed., 2010, 49, 8306; (b)
C. K. Tan, L. Zhou and Y.-Y. Yeung, Synlett, 2011, 1335; (c) A.
Castellanos and S. P. Fletcher, Chem. – Eur. J., 2011, 17, 5766;
(d) S. E. Denmark, W. E. Kuester and M. T. Burk, Angew. Chem.,
Int. Ed., 2012, 51, 10938; (e) U. Hennecke, Chem. – Asian J.,
2012, 7, 456; (f) C. K. Tan and Y.-Y. Yeung, Chem. Commun.,
2013, 49, 7985; (g) K. Murai and H. Fujioka, Heterocycles, 2013,
87, 763; (h) C. K. Tan, W. Z. Yu and Y.-Y. Yeung, Chirality, 2014,
26, 328; (i) S. Zheng, C. M. Schienebeck, W. Zhang, H.-Y. Wang
and W. Tang, Asian J. Org. Chem., 2014, 3, 366; (j) Y. A. Cheng,
W. Z. Yu and Y.-Y. Yeung, Org. Biomol. Chem., 2014, 12, 2333;
(k) C. B. Tripathi and S. Mukherjee, Synlett, 2014, 25, 163; (l)
A. Sakakura and K. Ishihara, Chem. Rec., 2015, 15, 728; (m) M.
H. Gieuw, Z. Ke and Y.-Y. Yeung, Chem. Rec., 2017, 17, 287; (n)
Y. Kawato and Y. Hamashima, Synlett, 2018, 29, 1257.
Conclusions
In summary, we have successfully achieved the highly
enantioselective synthesis of 3,3-disubstituted phthalides
possessing a chiral quaternary carbon center via catalytic
asymmetric
bromolactonization
using
BINOL-derived
bifunctional sulfide catalysts. The importance of the hydroxy
group on the chiral sulfide catalysts to recognize the imide anion
generated from brominating reagents was clarified based on
the results of control experiments. The great utility of the
present synthetic protocol was demonstrated in
transformations of the bromo group in optically active
phthalide products. Further applications of bifunctional sulfide
catalysts to other asymmetric reactions are currently under way
by our research group.
5
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins