ORGANIC
LETTERS
2006
Vol. 8, No. 3
387-390
New Fluorescent Amide-Functionalized
Phenylethynylthiophene Low Molecular
Weight Gelator
Chia-Chen Tsou†,‡ and Shih-Sheng Sun*,†
Institute of Chemistry, Academia Sinica, 115 Nankang, Taipei, Taiwan, Republic of
China, and Department of Chemistry, National Central UniVersity, 320 Chungli,
Taiwan, Republic of China
Received October 20, 2005
ABSTRACT
An amide-functionalized phenylethynylthiophene gelator has been synthesized. Self-assembly of this molecule via cooperative hydrogen bonding
and -stacking induced gelation of a variety of organic solvents. The presence of aggregates was confirmed by concentration-dependent
absorption and fluorescence properties. SEM and TEM studies reveal the formation of fiberlike nanostructure.
π
The unique ability of small organic gelators to immobilize
organic solvents via the cooperative effect of noncovalent
interactions, such as hydrogen bonding, π-π stacking,
donor-acceptor, and van der Waals interactions, has received
considerable current interest for various potential applica-
tions.1 In order for these assemblies to form, it is crucial to
control the intermolecular interactions in such a way that
the molecules are able to self-organize into higher order
structures but without transformation to a crystalline state.
Many structure prototypes of low-molecular-weight organic
gelators have been reported in the recent literature.2
π-conjugated systems.3 Surprisingly, to the best of our know-
ledge, there is no report of low molecular weight organic
gelators based on phenylenethynylene derivatives although
phenylene ethynylene derivatives have played significant
roles in the recent advances of optoelectronic applications.4
Herein, we report the first example of thermoreversible low
molecular weight organic gelator of fluorescent phenylen-
ethynylene derivative via cooperative hydrogen-bond- and
π-stacking-induced supramolecular assembly.
(3) (a) Schoonbeek, F. S.; van Esch, J. H.; Wegewijs, B.; Rep, D. B. A.;
de Haas, M. P.; Klapwijk, T. M.; Kellogg, R. M.; Feringa, B. L. Angew.
Chem., Int. Ed. 1999, 38, 1393-1397. (b) Wang, R.; Geiger, C.; Chen, L.;
Swanson, B.; Whitten, D. G. J. Am. Chem. Soc. 2000, 122, 2399-2400.
(c) Ajayaghosh, A.; George, S. J. J. Am. Chem. Soc. 2001, 123, 5148-
5149. (d) Ajayaghosh, A.; George, S. J.; Praveen, V. K. Angew. Chem.,
Int. Ed. 2003, 42, 332-335. (e) Sugiyasu, K.; Fujita, N.; Shinkai, S. Angew.
Chem., Int. Ed. 2004, 43, 1229-1233. (f) George, S. J.; Ajyaghosh, A.
Chem. Eur. J. 2005, 11, 3217-3227. (g) Wu¨rther, F.; Hanke, B.; Lysetska,
M.; Lambright, G.; Harms, G. S. Org. Lett. 2005, 7, 967-970. (h) Lampkins,
A. J.; Abdul-Rahim O.; Li, H.; Castellano, R. K. Org. Lett. 2005, 7, 4471-
4474.
In contrast, only scant work has been explored on the
structures and properties of organogels based on the rigid
* To whom correspondence should be adressed. Tel: +011-886-2-
27898596. Fax: +011-886-2-27831237.
† Academia Sinica.
‡ National Central University.
(1) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H.
Chem. ReV. 2005, 105, 1491-1546.
(2) (a) Terech, P.; Weiss, R. G. Chem. ReV. 1997, 97, 3133-3160. (b)
Abdallah, D. J.; Weiss, R. G. AdV. Mater. 2000, 12, 1237-1247. (c) van
Esch, J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000, 39, 2263-2266.
(4) Schenning, A. P. H. J.; Meijer, E. W. Chem. Commun. 2005, 3245-
3258.
10.1021/ol052542x CCC: $33.50
© 2006 American Chemical Society
Published on Web 01/06/2006