and F. Hampel, Chem. Eur. J., 2003, 9, 4796; (c) P. N. O’Shaughnessy
and P. Scott, Tetrahedron: Asymmetry, 2003, 14, 1979; (d) S. Hong,
S.Tian,M.V.MetzandT.J.Marks,J. Am. Chem. Soc., 2003, 125, 14768;
(e) D. V. Gribkov and K. C. Hultzsch, Chem. Commun., 2004, 730; (f)
P. D. Knight, I. Munslow, P. N. O’Shaughnessy and P. Scott, Chem.
Commun., 2004, 894; (g) D. V. Gribkov, F. Hampel and K. C. Hultzsch,
Eur. J. Inorg. Chem., 2004, 4091; (h) J. Collin, J.-D. Daran, O. Jacquet,
E. Schulz and A. Trifonov, Chem.Eur.J., 2005, 11, 3455; (i)J.Y.Kimand
T. Livinghouse, Org. Lett., 2005, 7,1737;(j)D.V.Gribkov,K.C.Hultzsch
and F. Hampel, J. Am. Chem. Soc., 2006, 128, 3748.
4 (a) M. Kawatsura and J. F. Hartwig, J. Am. Chem. Soc., 2000, 122,
9546; (b) O. Lo¨ber, M. Kawatsura and J. F. Hartwig, J. Am. Chem.
Soc., 2001, 123, 4366; (c) R. Dorta, P. Egli, F. Zu¨rcher and A. Togni,
J. Am. Chem. Soc., 1997, 119, 10857.
5 (a) R. Wegler and G. Pieper, Chem. Ber., 1950, 83, 1; (b) B. W. Howk,
E. L. Little, S. L. Scott and G. M. Whitman, J. Am. Chem. Soc., 1954,
76, 1899; (c) R. D. Closson, J. P. Napolitano, G. G. Ecke and A. Kolka,
J. Org. Chem., 1957, 22, 646.
Scheme 2 Bicyclisation of 14b.
arrangement of the two methyl substituents,19 underwent slow
bicyclisation at 22 uC (70% conv. of 14b in 6 d) to give 2,4,6-
dimethyl-1-azabicyclo[2.2.1]heptane (15) with 8:1 exo,exo:endo,exo
diastereoselectivity (Scheme 2). The major diastereomer 14a with a
transoid arrangement of the two methyl substituents remained
unaffected under these conditions.
Lithium amides are well known to form higher aggregates.20
Although the molecularity of (S,S,S)-3 under catalytic conditions
is not known,21 it seems obvious, though still speculative, that a
dimeric structure similar to that observed in the solid state is
pivotal for the catalytic process described herein. Preliminary
experiments indicate a relative minor influence of catalyst loading
or added THF on enantiomeric excess (Table 1, entries 1–4), while
the effect on catalytic activity is more pronounced. With respect to
the importance of the nuclearity of (S,S,S)-3 for its catalytic
activity it is also important to note that lithiation of (R,S,S)-2 did
not generate a well defined species, based on the broad and
featureless NMR spectra, and no catalytic activity was observed.22
Further investigations are currently aimed at extending the
scope of the catalyst to intermolecular hydroamination reactions.
More detailed mechanistic and kinetic investigations are required
in order to elucidate the catalytically active species and understand
the factors which are responsible for the increased catalytic activity
and enantioselectivity in the dimeric dilithium amide complex
(S,S,S)-3 relative to simple lithium amides, such as (S)-4.
Generous financial support by the Deutsche Forschungs-
gemeinschaft (DFG) and the Dr Otto Ro¨hm Geda¨chtnisstiftung
is gratefully acknowledged. K. C. H. is a DFG Emmy Noether
fellow (2001–2006) and thanks Professor John A. Gladysz for his
continual support.
6 (a) R. J. Schlott, J. C. Falk and K. W. Narducy, J. Org. Chem., 1972,
37, 4243; (b) K. Takabe, T. Katagiri and J. Tanaka, Bull. Chem. Soc.
Jpn., 1973, 46, 222; (c) M. Beller, C. Breindl, T. H. Riermeier,
M. Eichberger and H. Trauthwein, Angew. Chem., Int. Ed., 1998, 37,
3389; (d) D. Tzalis, C. Koradin and P. Knochel, Tetrahedron Lett., 1999,
40, 6193; (e) C. G. Hartung, C. Breindl, A. Tillack and M. Beller,
Tetrahedron, 2000, 56, 5157; (f) M. Beller, C. Breindl, T. H. Riermeier
and A. Tillack, J. Org. Chem., 2001, 66, 1403; (g) K. Kumar,
D. Michalik, I. G. Castro, A. Tillack, A. Zapf, M. Arlt, T. Heinrich,
H. Bo¨ttcher and M. Beller, Chem. Eur. J., 2004, 10, 746.
7 R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008.
8 (a) H. Lehmkuhl and D. Reinehr, J. Organomet. Chem., 1973, 55, 215;
(b) G. P. Pez and J. E. Galle, Pure Appl. Chem., 1985, 57, 1917; (c)
D. Steinborn, B. Thies, I. Wagner and R. Taube, Z. Chem., 1989, 29,
333; (d) V. Khedkar, A. Tillack, C. Benisch, J.-P. Melder and M. Beller,
J. Mol. Catal. A, 2005, 241, 175.
9 A. Ates and C. Quinet, Eur. J. Org. Chem., 2003, 1623.
10 M. R. Crimmin, I. J. Casely and M. S. Hill, J. Am. Chem. Soc., 2005,
127, 2042.
11 Application of chiral lithium amides in stoichiometric conjugate
additions: S. G. Davies, A. D. Smith and P. D. Price, Tetrahedron:
Asymmetry, 2005, 16, 2833.
12 General reviews on the application of chiral lithium bases: (a) P. O’Brian,
J. Chem. Soc., Perkin Trans. 1, 1998, 1439; (b) D. Hoppe and T. Hense,
Angew. Chem., Int. Ed. Engl., 1997, 36, 2282; (c) P. J. Cox and
N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1.
13 The configuration of (R,S,S)-1 was established by synthesis starting
from enantiopure (R)-diaminobinaphthyl.
14 For similar g2 and g3 coordination modes in aromatic lithium amides,
see: (a) C. Drost, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc.,
Dalton Trans., 1996, 3595; (b) D. T. Carey, F. S. Mair, R. G. Pritchard,
J. E. Warren and R. J. Woods, Eur. J. Inorg. Chem., 2003, 3464.
15 For p-arene complexes of lithium amides, see: (a) B. Gemu¨nd, H. No¨th,
H. Sachdev and M. Schmidt, Chem. Ber., 1996, 129, 1335; (b)
F. Antolini, P. B. Hitchcock, M. F. Lappert and P. Merle, Chem.
Commun., 2000, 1301; (c) S. Danie`le, C. Drost, B. Gehrhus,
S. M. Hawkins, P. B. Hitchcock, M. F. Lappert, P. G. Merle and
S. G. Bott, J. Chem. Soc., Dalton Trans., 2001, 3179; (d) C. Neumann,
A. Schulz, T. Seifert, W. Storch and M. Vosteen, Eur. J. Inorg. Chem.,
2002, 1040; (e) N. Burford, M. D’eon, P. J. Ragogna, R. McDonald and
M. J. Ferguson, Inorg. Chem., 2004, 43, 734.
Notes and references
{ Crystallographic data for (S,S,S)-3?C6H6: C70H78Li4N8, Mr = 1059.16,
crystal size 0.15 6 0.10 6 0.10 mm, monoclinic, space group P21, a =
˚
9.7704(1), b = 17.6269(3), c = 16.8330(2) A, b = 93.335(1)u, V = 2894.10(7)
A , Z = 2, Dc = 1.215 g cm23, F(000) = 1132, Mo-Ka radiation (l =
3
˚
0.71073 A), T = 173(2) K, m = 0.070 mm21, 13208 independent reflections
˚
were measured on a Nonius KappaCCD system, R1 (I > 2s(I)) = 0.0542,
wR2 (all data) = 0.1438. The absolute configuration could not be
determined (abs. struct. param. 0.30(16)), but the relative configuration
was assigned based on the known (S) configuration of the BOC-L-proline
ligand precursor. CCDC 297865. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b518360j
16 Chelating diamines, such as TMEDA are known to accelerate lithium
catalysed hydroaminations, see ref. 8.
17 S. Kobayashi, H. Uchiro, Y. Fujishita, I. Shiina and T. Mukaiyama,
J. Am. Chem. Soc., 1991, 113, 4247.
18 M. E. Jung and G. Pizzi, Chem. Rev., 2005, 105, 1735.
19 K. C. Hultzsch, F. Hampel and T. Wagner, Organometallics, 2004, 23,
2601.
1 (a) T. E. Mu¨ller and M. Beller, Chem. Rev., 1998, 98, 675; (b) J. J. Brunet
and D. Neibecker, in Catalytic Heterofunctionalization from
Hydroamination to Hydrozirconation, ed. A. Togni and H.
Gru¨tzmacher, Wiley-VCH, Weinheim, 2001, p. 91; (c) J. Seayad,
A. Tillack, C. G. Hartung and M. Beller, Adv. Synth. Catal., 2002, 344,
795; (d) F. Pohlki and S. Doye, Chem. Soc. Rev., 2003, 32, 104; (e)
S. Hong and T. J. Marks, Acc. Chem. Res., 2004, 37, 673; (f)
J. F. Hartwig, Pure Appl. Chem., 2004, 76, 507.
20 (a) M. A. Beswick and D. S. Wright, in Comprehensive Organometallic
Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson,
Pergamon Press, Oxford, 1995, vol. 1, p. 1; (b) K. Gregory,
P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47.
7
21 The Li NMR spectrum showed only a single resonance for (S,S,S)-3
(C6D6, 60 uC).
2 (a) K. C. Hultzsch, Adv. Synth. Catal., 2005, 347, 367; (b) K. C. Hultzsch,
Org. Biomol. Chem., 2005, 1819.
3 (a) P. N. O’Shaughnessy, P. D. Knight, C. Morton, K. M. Gillespie and
P. Scott, Chem. Commun., 2003, 1770; (b) D. V. Gribkov, K. C. Hultzsch
22 No reaction was observed in the attempted cyclisation of 5 (90 h,
110 uC). The spectral features of this compound suggest an oligomeric
structure, rather than a dimeric species similar to (S,S,S)-3.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2221–2223 | 2223