3228
I. Paterson et al.
PAPER
(5) In addition to the originally proposed structure by Professor
Andersen, as reported in ref. 1, a preliminary stereochemical
assignment was made by us for the C1–C11 region.
(6) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron
Lett. 1996, 37, 8585. (b) Paterson, I.; Collett, L. A.
Tetrahedron Lett. 2001, 42, 1187.
(7) (a) Evans, D. A.; Coleman, P. J.; Côté, B. J. Org. Chem.
1997, 62, 788. (b) Evans, D. A.; Côté, B.; Coleman, P. J.;
Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10893.
(8) Cowden, C. J.; Paterson, I. Organic Reactions, Vol. 51;
Paquette, L. A., Ed.; Wiley: New York, 1997, 1–200.
(9) (a) Paterson, I.; Wallace, D. J.; Velazquez, S. M.
Tetrahedron Lett. 1994, 35, 9083. (b) Paterson, I.; Wallace,
D. J.; Cowden, C. J. Synthesis 1998, 639.
H
O
F
E
OMe
Cl
O
O
D
RO2C
37
O
1
O
OH
3
26
H
O
H
25
HO
H
OH
7
11
9
13
O
B
O
OH
OMe
21
HO
C
19: R = H, Spirastrellolide A
22: R = Me
H
O
OMe
Cl
E
O
(10) Crimmins, M. T.; Kirincich, M. T.; Wells, S. J.; Choy, A. L.
Synth. Commun. 1998, 28, 3675.
40
F
O
D
O
O
(11) All new compounds gave spectroscopic data in agreement
with the assigned structures. Compound 2 had
26
OH
21
[a]D22 = +34.5 (c 0.80, CHCl3); 1H NMR (500 MHz, C6D6):
d = 7.78–7.83 (m, 4 H, ArH), 7.22–7.29 (m, 6 H, ArH), 5.60
(dd, J = 9.9, 2.4 Hz, 1 H, H15), 5.51 (dd, J = 9.9, 1.7 Hz, 1 H,
H16), 4.38 (m, 1 H, H11), 4.22 (m, 1 H, H9), 4.07 (m, 1 H, H3),
4.03 (m, 1 H, H7), 3.94 (m, 1 H, H21eq.), 3.88 (m, 3 H, 2 × H1,
1
OH
OH
H
H
PMBO
25
A
O
HO
H
H21ax.), 3.81 (m, 1 H, H13), 3.15 (m, 1 H, H20), 3.10 (s, 3 H,
O
OH
OMe
O
OMe), 2.12 (m, 1 H, H8), 2.10 (m, 1 H, H2), 2.09 (1H, m,
H10), 2.04 (m, 1 H, H10), 2.02 (m, 1 H, H14), 1.97 (m, 1 H,
B
HO
C
H19ax.), 1.93 (m, 2 H, 2 × H12), 1.84 (m, 1 H, H18eq., H19eq.),
20
1.82 (m, 1 H, H2), 1.76 (m, 1 H, H8), 1.65 (m, 1 H, H6eq.),
1.58 (m, 1 H, H4eq.), 1.50 (m, 1 H, H18ax.), 1.49 (m, 2 H,
2 × H5), 1.36 (m, 1 H, H6ax.), 1.25 (m, 1 H, H4ax.), 1.19 (s, 9
H, SitBu), 1.05 (s, 9 H, SitBu), 1.03 (s, 9 H, SitBu), 0.80 (d,
J = 7.1 Hz, 3 H, Me14), 0.26 (s, 3 H, SiMe), 0.28 (s, 3 H,
SiMe), 0.24 (s, 3 H, SiMe), 0.20 (s, 3 H, SiMe); 13C NMR
(125 MHz, C6D6): d = 135.8, 135.7, 134.2, 134.1, 134.0,
129.7, 129.4, 93.0, 74.9, 71.0, 68.4, 68.3, 67.7, 67.6, 63.7,
61.5, 55.7, 46.6, 43.0, 42.5, 36.3, 34.5, 34.3, 30.8, 29.8, 27.0,
26.1, 26.0, 25.3, 19.3, 18.8, 18.2, 18.1, 17.0, –3.5, –3.7, –3.9,
–4.0; HRMS (ES+): m/z [M + H]+ calcd for C51H87O7Si3:
895.5754; found: 895.5752.
Figure 2 Revised structural assignment of spirastrellolide2 and syn-
thetic fragments prepared.18
trellolide A (16% yield over the longest linear sequence of
14 steps). Key features include the use of asymmetric bo-
ron aldol reactions to configure several stereocentres,
along with the mild and selective conditions employed for
spiroacetalisation. In more recent efforts directed towards
the total synthesis of spirastrellolide A (19), this prelimi-
nary work has already helped guide our strategy for the
construction of the stereochemically revised C1–C25 sub-
unit 20.
(12) The configuration at C13 was confirmed by 1H NMR analysis
using the Kakisawa–Mosher method: Ohtani, I.; Kusumi, T.;
Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092.
(13) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
(14) Tsuji, J. Synthesis 1984, 369.
Acknowledgment
(15) (a) Smith, A. B.; Minbiole, K. P.; Verhoest, P. R.; Schelhaas,
M. J. Am. Chem. Soc. 2001, 123, 10942.
We thank the EPSRC (EP/C541677/1), Homerton College, Cam-
bridge (Research Fellowship to E.A.A.) and Merck for support, and
Professor Raymond Andersen (University of British Columbia) for
helpful discussions.
(b) Dihydropyranone 12 was conveniently accessed via a
Jacobsen hetero-Diels–Alder reaction between
Danishefsky’s diene and TPSO(CH2)2CHO in 94% yield and
99% ee.
References
(16) Paterson, I.; Smith, J. D.; Ward, R. A. Tetrahedron 1995, 51,
9413.
(17) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem.
Soc. 1988, 110, 3560.
(1) Williams, D. E.; Roberge, M.; Van Soest, R.; Andersen, R.
J. J. Am. Chem. Soc. 2003, 125, 5296.
(2) Williams, D. E.; Lapawa, M.; Feng, X.; Tarling, T.;
Roberge, M.; Andersen, R. J. Org. Lett. 2004, 6, 2607.
(3) (a) Le, L. H.; Erlichman, C.; Pillon, L.; Thiessen, J. J.; Day,
A.; Wainman, N.; Eisenhauer, E. A.; Moore, M. J. Invest.
New Drugs 2004, 22, 159. (b) Honkanen, R. E.; Golden, T.
Curr. Med. Chem. 2002, 9, 2055.
(4) For reviews on the synthesis of marine macrolides, see:
(a) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
(b) Paterson, I.; Yeung, K.-S. Chem. Rev. 2005, 105, in
press.
(18) (a) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O.
Org. Lett. 2005, 7, 4121. (b) Paterson, I.; Anderson, E. A.;
Dalby, S. M.; Loiseleur, O. Org. Lett. 2005, 7, 4125.
(19) For other synthetic studies towards spirastrellolide, see:
(a) Liu, J.; Hsung, R. P. Org. Lett. 2005, 7, 2273.
(b) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O.
Abstracts of Papers 229th National Meeting of the American
Chemical Society, San Diego; ACS: Washington D.C., 2005,
ORGN-331. (c) Wang, C.; Forsyth, C. J. Abstracts of Papers
229th National Meeting of the American Chemical Society,
San Diego; ACS: Washington D.C., 2005, ORGN-414.
Synthesis 2005, No. 19, 3225–3228 © Thieme Stuttgart · New York