74
L.C. da Silva et al. / Inorganic Chemistry Communications 70 (2016) 71–74
[17] X. Wu, Y. Diao, C. Sun, J. Yang, Y. Wang, S. Sun, Fluorimetric determination of ascor-
References
[18] W. Kim, R.L. Dahlgren, L.L. Moroz, J.V. Sweedler, Ascorbic acid assays of individual
neurons and neuronal tissues using capillary electrophoresis with laser-induced
[19] G. Burini, Development of a quantitative method for the analysis of total L-ascorbic
acid in foods by high-performance liquid chromatography, J. Chromatogr. A 1154
[20] I. Nemet, V.M. Monnier, Vitamin C degradation products and pathways in the
[1] D.T. Quang, J.S. Kim, Fluore- and chromogenic chemodosimeters for heavy metal
ion detection in solution and biospecimens, Chem. Rev. 110 (2010) 6280–6301,
[2] Y. Jeong, J. Yoon, Recent progress on fluorescent chemosensors for metal ions, Inorg.
[3] K.P. Carter, A.M. Young, A.E. Palmer, Fluorescent sensors for measuring metal ions in
[4] M.C. Yeung, V.W. Yam, Luminescent cation sensors: from host-guest chemistry, su-
pramolecular chemistry to reaction-based mechanisms, Chem. Soc. Rev. 44 (2015)
[5] Q. Hu, Y. Liu, R. Wen, Y. Gao, Y. Bei, Q. Zhu, A new rhodamine-based dual chemosensor
[6] H.S. Kumbhar, U.N. Yadav, B.L. Gadilohar, G.S. Shankarling, A highly selective
fluorescent chemosensor based on thio-β-enaminone analog with a turn-on re-
sponse for Cu(II) in aqueous media, Sensors Actuators B Chem. 203 (2014) 174–180,
[7] A. Kumar, V. Kumar, U. Diwan, K.K. Upadhyay, Highly sensitive and selective naked-
eye detection of Cu2+ in aqueous medium by a ninhydrin–quinoxaline derivative,
[8] M. Wang, K. Leung, S. Lin, D.S. Chan, D.W.J. Kwong, C. Leung, D. Ma, A colorimetric
chemosensor for Cu2+ ion detection based on an iridium(III) complex, Sci. Rep. 4
[9] O.O. Ajani, Present status of quinoxaline motifs: excellent pathfinders in therapeutic
[21] M.A.E. Sekly, S. Mancy, K. Fahmy, Some quinoxaline derivatives from dehydro-D-
[22] Characterization data for compound 1: Mp. 180 °C; IR (KBr) υmax (cm−1): 3453,
3302, 2873, 1670, 1517, 1456, 1047, 752. 1H NMR (400 MHz, DMSO-d6) δ (ppm):
10.10 (s, 1H, CONH), 8.23 (d, 1H, J = 7.8 Hz, ArH), 8.18 (d, 1H, J = 8.0 Hz, ArH),
7.99–7.90 (m, 2H, ArH), 7.37 (d, 1H, J = 7.8 Hz, ArH), 7.00 (t, 1H, J = 7.7 and
7.5 Hz, ArH), 6.81 (d, 1H, J = 8.0 Hz, ArH), 6.64 (t, 1H, J = 7.6 and 7.4 Hz, ArH),
5.48–5.41 (br, 2H, CH and OH), 5.00 (br, 2H, NH2) 4.79 (d, 1H, J = 9.8 Hz, CH),
4.61 (t, 1H, J = 5.3 and 5.5 Hz, CH), 4.05 (br, 1H, CH), 3.61–3.53 (m, 1H, CH), 3.49–
3.42 (m, 1H, CH). 13C NMR (75 MHz, DMSO-d6) δ (ppm): 164.7, 155.6, 147.0,
142.7, 140.7, 139.1, 131.5, 130.5, 129.0, 128.5, 126.7, 125.9, 122.4, 116.2, 115.9,
74.0, 71.5, 62.8. Elemental analysis for C18H18N4O4: calculated: C, 61.01; H, 5.12;
N, 15.81; found: C, 60.93; H, 5.20; N, 15.91.
[23] B.S. Garg, N. Bhojak, P. Dwivedi, V. Kumar, Copper(II) complexes of acid amide
derivatives of 2-aminopyridine and an exogenous ligand, Transit. Met. Chem. 24
[24] S. Kawaguchi, K. Araki, Mild, rapid and selective alcoholysis of terpyridine-appended
amide substrates by Cu2+-catalysis: protonation state and reactivity of the complex,
[25] J.J.P. Stewart, Optimization of parameters for semiempirical methods. V. Modifica-
tion of NDDO approximations and application to 70 elements, J. Mol. Model. 13
[10] S. Achelle, C. Baudequin, N. Plé, Luminescent materials incorporating pyrazine
[11] C.J. Dhanaraj, J. Johson, Metal complexes of quinoxaline derivatives: review (part-I),
[12] C.J. Dhanaraj, J. Johson, Metal complexes of quinoxaline derivatives: review (part-II),
[13] Y.V.D. Nageswar, H.V. Reddy, K. Ramesh, N. Murthy, Organic preparations and
procedures international, The New Journal for Organic Synthesis 45 (2013) 1–27,
[14] E.S.H.E. Ashry, K.F. Atta, S. Abouk-Ela, R. Beldi, MAOS of quinoxalines, conjugated
pyrazolylquinoxalines and fused pyrazoloquinoxalines from L-ascorbic and
[15] C. Henning, K. Liehr, M. Girndt, C. Ulrich, M.A. Glomb, Extending the spectrum of
α-dicarbonyl compounds in vivo, J. Biol. Chem. 289 (2014) 28676–28688, http://
[27] R. Martínez-Mañez, F. Sancenón, Fluorogenic and chromogenic chemosensors and
[16] H. Dahn, H. Moll, Über die reaktion von dehydro-ascorbinsäure und anderen 2,3-
diketobutyrolactonen mit 2 mol. o-phenylendiamin. 21. Mitteilungüberreduktone
und tricarbonylverbindungen, Helv. Chim. Acta 47 (1964) 1860–1870, http://dx.