6332
A. M. Warshawsky et al. / Bioorg. Med. Chem. Lett. 16 (2006) 6328–6333
CTF selectivities versus PPARa. The improved gamma
selectivity of these substituted tailpieces can result from
differences in the receptor binding as seen through
molecular docking studies with 15 and 35 into PPARc
(PDB: 1fm9) and PPARa (PDB: 1k7l).10 Substitution
on the terminal phenyl ring introduced unfavorable ste-
ric interactions with the PPARa LBD Tyr334, Cys275,
and Leu254 side chains; this steric effect is absent with
the corresponding Glu343, Gly 284, and Ile262 side
chains in PPARc. Finally, incorporation of the morpho-
linothiazole-based tailpiece led to a potent PPARc
agonist (38). Compared to the phenyloxazole-based
tailpiece analog (19), AMC 38 had equivalent PPARc
binding but 11-fold greater PPARc/a selectivity.
References and notes
1. PPAR reviews: (a) Staels, B.; Fruchart, J.-C. Diabetes
2005, 54, 2460; (b) Etgen, G. J.; Mantlo, N. Curr. Top.
Med. Chem. 2003, 3, 1649; (c) Miller, A. R.; Etgen, G. J.
Expert Opin. Investig. Drugs 2003, 12, 1489; (d) Willson,
T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B. R.
J. Med. Chem. 2000, 43, 527.
2. Parks, D. J.; Tomkinson, N. C. O.; Villeneuve, M. S.;
Blanchard, S. G.; Willson, T. M. Bioorg. Med. Chem. Lett.
1998, 8, 3657.
3. (a) Gampe, R. T.; Montana, V. G.; Lambert, M. H.;
Miller, A. B.; Bledsoe, R. K.; Milburn, M. V.; Kliewer, S.
A.; Willson, T. M.; Xu, H. E. Mol. Cell 2000, 5, 545; (b)
Nolte, R. T.; Wisely, G. B.; Westin, S.; Cobb, J. T.;
Lambert, M. H.; Kurokawa, R.; Rosenfeld, M. G.;
Willson, T. M.; Glass, C. K.; Milburn, M. V. Nature
1998, 395, 137.
4. Haigh, D.; Allen, G.; Birrell, H. C.; Buckle, D. R.;
Cantello, B. C. C.; Eggleston, D. S.; Haltiwanger, R. C.;
Holder, J. C.; Lister, C. A.; Pinto, I. L.; Rami, H. K.;
Sime, J. T.; Smith, S. A.; Sweeney, J. D. Bioorg. Med.
Chem. 1999, 7, 821.
5. (a) Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.;
Brown, K. K.; Cobb, J. E.; Collins, J. L.; Harrington, W.
W., Jr.; Hashim, M. A.; Hull-Ryde, E. A.; Kaldor, I.;
Kliewer, S. A.; Lake, D. H.; Leesnitzer, L. M.; Lehmann,
J.; Lenhard, J. M.; Orband-Miller, L. A.; Miller, J. F.;
Mook, R. A.; Noble, S. A.; Oliver, W.; Parks, D. J.;
Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. J. Med.
Chem. 1998, 41, 5020; (b) Collins, J. L.; Blanchard, S. G.;
Boswell, G. E.; Charifson, P. S.; Cobb, J. E.; Henke, B. R.;
Hull-Ryde, E. A.; Kazmierski, W. M.; Lake, D. H.;
Leesnitzer, L. M.; Lehmann, J.; Lenhard, J. M.; Orband-
Miller, L. A.; Gray-Nunez, Y.; Parks, D. J.; Plunket, K.
D.; Tong, W.-Q. J. Med. Chem. 1998, 41, 5036; (c) Cobb,
J. E.; Blanchard, S. G.; Boswell, G. E.; Brown, K. K.;
Cooper, J. P.; Collins, J. L.; Dezube, M.; Henke, B. R.;
Hull-Ryde, E. A.; Lake, D. H.; Leesnitzer, L. M.;
Lenhard, J. M.; Oliver, W., Jr.; Oplinger, J.; Pentti, M.;
Parks, D. J.; Plunket, K. D.; Tong, W.-Q. J. Med. Chem.
1998, 41, 5055; (d) Sorbera, L. A.; Leeson, P. A.; Martin,
L.; Castaner, J. Drugs Future 2001, 26, 354.
The functional potencies (EC50s) of these more tightly
bound ligands were consistently less than or equal to
the IC50 values, and the ratios between these values var-
ied considerably. The many parameters involved in the
CTF assay; cell type, response element, co-activators,
nuclear and cell membrane penetrability, among others;
may account for these differences. While in vitro charac-
terization helped to prioritize compounds for in vivo
study, the in vitro data did not correlate rigorously with
in vivo responses (vide infra).
Two rodent models of type 2 diabetes responsive to
PPARc modulation, the db/db mouse11a and the male
Zucker diabetic fatty (ZDF) rat,11b were used to evalu-
ate several of these AMC compounds (Table 1). In
db/db mice, compounds were dosed orally at 30 mg/kg
for 7 days, and % glucose normalizations relative to
plasma glucose levels of lean animals were determined
using rosiglitazone (3) as an internal standard in each
study. Dose–response studies in ZDF rats (7 days at
0.3, 1, 3, and 10 mg/kg) generated ED50 values. The
AMC PPARc in vitro profiles translated nicely into in vi-
vo responses. The AMC compounds tested in db/db mice
produced plasma glucose reductions similar to or sub-
stantially better than rosiglitazone. All of the AMC
compounds tested in the ZDF rat normalized plasma
glucose and were significantly more potent than rosiglit-
azone with ED50 values ranging from 0.02 to 0.12 mg/kg
versus 0.41 mg/kg, respectively. A concomitant lowering
of plasma triglycerides with reductions in plasma glu-
cose was observed in both rodent models.
6. (a) Harrity, T.; Farrelly, D.; Tieman, A.; Chu, C.;
Kunselman, L.; Gu, L.; Ponticiello, R.; Cap, M.; Qu, F.;
Shao, C.; Wang, W.; Zhang, H.; Fenderson, R.; Chen, S.;
Devasthale, P.; Jeon, Y.; Seethala, R.; Yang, W.-P.; Ren,
J.; Zhou, M.; Biller, S.; Mookhtiar, K. A.; Wetterau, J.;
Gregg, R.; Cheng, P. T.; Hariharan, N. Diabetes 2006, 55,
240; (b) McIntyre, J. A.; Castaner, J. Drugs Future 2004,
29, 1084.
7. Martin, J. A.; Brooks, D. A.; Prieto, L.; Gonzalez,
R.; Torrado, A.; Rojo, I.; Lopez de Uralde, B.;
Lamas, C.; Ferritto, R.; Dolores Martin-Ortega, M.;
Agejas, J.; Parra, F.; Rizzo, J. R.; Rhodes, G. A.;
Robey, R. L.; Alt, C. A.; Wendel, S. R.; Zhang, T.
Y.; Reifel-Miller, A.; Montrose-Rafizadeh, C.; Brozi-
nick, J. T.; Hawkins, E.; Misener, E. A.; Briere, D.
A.; Ardecky, R.; Fraser, J. D.; Warshawsky, A. M.
Bioorg. Med. Chem. Lett. 2005, 15, 51.
8. Shinkai, H.; Onogi, S.; Tanaka, M.; Shibata, T.; Iwao, M.;
Wakitani, K.; Uchida, I. J. Med. Chem. 1998, 41, 1927,
preparation of mesylate.
9. Brooks, D. A.; Etgen, G. J.; Rito, C. J.; Shuker, A. J.;
Dominianni, S. J.; Warshawsky, A. M.; Ardecky, R.;
Paterniti, J. R.; Tyhonas, J.; Karanewsky, D. S.; Kauff-
man, R. F.; Broderick, C. L.; Oldham, B. A.; Montrose-
Rafizadeh, C.; Winneroski, L. L.; Faul, M. M.; McCarthy,
J. R. J. Med. Chem. 2001, 44, 2061.
Differences between human and mouse PPARa have been
documented in the literature.12 The AMC compounds in
Table 1 uniformly lacked functional mouse PPARa activ-
ity as determined through CTF assays, precluding their
evaluation in our PPARa responsive animal model.
In summary, the value of the AMC template in PPAR
ligand design has been demonstrated. By varying the
substitution on the amino group and the tailpiece, com-
pounds were identified having potent PPARc binding
affinity and functional activity with varying degrees of
PPARa activity. Reductions in plasma triglycerides
and glucose by these compounds in rodents models of
type 2 diabetes sensitive to PPARc were observed.
Further SAR studies with the AMC template will be
reported in due course.