T. Torii et al. / Tetrahedron Letters 47 (2006) 6139–6141
6141
Jeong, L. S.; Nicklaus, M. C.; George, C.; Marquez, V. E.
Tetrahedron Lett. 1994, 35, 7569.
product 11 could be isolated in 61% yield after column
chromatography. Finally, the Tr2–FddG (11) obtained
was allowed to be deprotected under acidic conditions
to give FddG (1)13 in 69% yield.
9. (a) Kaneko, M.; Shimizu, B. Chem. Pharm. Bull. 1972, 20,
635; (b) Ogilvie, K. K.; Slotin, L.; Westmore, J. B.; Lin, D.
Can. J. Chem. 1972, 50, 2249.
10. The 1H NMR spectrum of 9 shows a C30 proton at d 5.29
In summary, a concise synthesis of FddG (1) using the
30-a-selective fluorination of 8,20-thioanhydronucleoside
8 has been achieved. This synthetic method using reten-
tive fluorination at the C30 position has the advantage of
providing FddG (1) in high yields with a safer fluorina-
tion agent, NfF. Further studies are now in progress.
0
with a large geminal coupling constant ðJ3 -F ¼ 52:1 HzÞ,
indicating that a fluorine atom is attached to C30, not C20.
This is also supported by vicinal coupling constants of
H20-F ðJ2 -F ¼ 20:4 HzÞ and H40-F ðJ4 -F ¼ 22:9 HzÞ.
0
0
0
0
0
0
Since the vicinal coupling constants for J2 –3 and J3 –4
are almost 0 Hz, the C30 proton should be in the b
configuration, and, therefore the fluorine atom at the C30
position should be in the a configuration.
11. Experimental procedure and characterization data: To a
solution of 8 (78.2 mg, 0.1 mmol) in AcOEt (2 mL) was
added NfF (0.224 mL, 1.2 mmol) and i-Pr2NEt (0.216 mL,
1.2 mmol), and the mixture was stirred for 20 h at 65 ꢁC.
After the mixture was cooled to room temperature, AcOEt
(5 mL) and H2O (2 mL) were added and the mixture was
separated. The organic layer was dried over MgSO4. After
the filtrate was concentrated under reduced pressure, the
residue was purified by silica gel column chromatography
(32:1 CH2Cl2–CH3OH) to give 9 (71.8 mg, 91%) as
colorless crystals. Mp 201–203 ꢁC; 1H NMR (400 MHz,
CDCl3) d 3.03–3.09 (1H, m, H-50), 3.18–3.23 (1H, m, H-
50), 4.60 (1H, dt, J = 22.9, 6.9 Hz, H-40), 4.83 (1H, dd,
J = 20.4, 6.5 Hz, H-20), 5.29 (1H, d, J = 52.1 Hz, H-30),
6.34 (1H, d, J = 6.5 Hz, H-10), 6.43 (1H, br, NH), 7.05–
7.40 (31H, m, aromatic and NH); 13C NMR (100 MHz,
CDCl3) d 58.7 (J = 24 Hz), 62.4 (J = 10 Hz), 71.0, 73.3,
85.8 (J = 24 Hz), 87.0, 97.7 (J = 187 Hz), 123.0, 127.3,
127.9, 128.3, 128.4, 128.5, 128.6, 143.0, 143.2, 143.6, 146.8,
150.0, 151.4; HRMS (FAB+) calcd for C48H39FN5O3S
(MH+), 784.2758, found 784.2765.
Acknowledgements
We thank Mr. Daisuke Takahashi for his technical
assistance.
References and notes
1. (a) Herdewijn, P.; Balzarini, J.; Baba, M.; Pauwels, R.;
Van Aerschot, A.; Janssen, G.; De Clercq, E. J. Med.
Chem. 1988, 31, 2040; (b) Balzarini, J.; Baba, M.; Pauwels,
R.; Herdewijn, P.; Wood, S. G.; Robins, M. J.; De Clercq,
E. Mol. Pharmacol. 1988, 33, 243; (c) Hartmann, H.; Vogt,
M. W.; Durno, A. G.; Hirsch, M. S.; Hunsmann, G.;
Eckstein, F. AIDS Res. Hum. Retroviruses 1988, 4, 457.
2. (a) Hafkemeyer, P.; Keppler-Hafkemeyer, A.; al Haya, M.
A.; Von Janta-Lipinski, M.; Matthes, E.; Lehmann, C.;
Offensperger, W.-B.; Offensperger, S.; Gerok, W.; Blum,
H. E. Antimicrob. Agents Chemother. 1996, 40, 792; (b)
12. Compound 11: mp 167–169 ꢁC; 1H NMR (400 MHz,
CDCl3) d 2.00–2.30 (2H, m, H-20), 3.20–3.30 (2H, m, H-
50), 4.25 (1H, dm, J = 26.6 Hz, H-40), 5.03 (1H, dm,
J = 54.7 Hz, H-30), 5.57–5.62 (1H, m, H-10), 7.15–7.45
(33H, m, aromatic, H-8 and NH · 2); 13C NMR
(100 MHz, CDCl3) d 38.7 (J = 30 Hz), 63.3 (J = 9 Hz),
71.1, 81.8, 83.7 (J = 18 Hz), 87.1, 94.1 (J = 177 Hz), 125.1,
127.4, 127.9, 128.0, 128.5, 128.6, 128.9, 135.0, 135.5, 143.3,
143.6, 144.1, 151.2; HRMS (FAB+) calcd for
C48H41FN5O3 (MH+), 754.3193, found 754.3221.
¨
Schro¨der, I.; Holmgren, B.; Oberg, M.; Lo¨fgren, B.
Antivir. Res. 1998, 37, 57.
3. Torii, T.; Onishi, T.; Tanji, S.; Izawa, K. Nucleosides,
Nucleotides Nucleic Acids 2005, 24, 1051.
4. Torii, T.; Maruyama, T.; Demizu, Y.; Onishi, T.; Izawa,
K.; Neyts, J.; De Clercq, E. Nucleosides, Nucleotides
Nucleic Acids 2006, 25, 655.
5. (a) Komatsu, H.; Araki, T. Tetrahedron Lett. 2003, 44,
2899; (b) Abdel-Bary, H. M.; El-Barbary, A. A.; Khodair,
A. I.; Abdel Megied, A. E.; Perdersen, E. B.; Nielsen, C.
Bull. Soc. Chim. Fr. 1995, 132, 149.
6. (a) Saizewa, G. W.; Kowollik, G.; Langen, P.; Mikhai-
lopulo, I. A.; Kvasjuk, E. I. DD Patent 209197, 1984; (b)
Kowollik, G.; Langen, P. Nucleic Acid Chemistry; Wiley:
New York, 1978, Part 1, 299; (c) Etzold, G.; Hintsche, G.
E. R.; Kowollik, G.; Langen, P. Tetrahedron 1971, 27,
2463.
13. Compound 1: mp 255 ꢁC (dec); 1H NMR (400 MHz,
DMSO-d6) d 2.50–2.67 (1H, m, H-20), 2.70–2.90 (1H, m,
H-20), 3.50–3.60 (2H, m, H-50), 4.16 (1H, dt, J = 27.0,
4.9 Hz, H-40), 5.15 (1H, d, J = 5.4 Hz, OH), 5.38 (1H, dd,
J = 53.6, 4.3 Hz, H-30), 6.15 (1H, dd, J = 9.4, 5.6 Hz, H-
10), 6.49 (2H, br, NH2), 7.94 (1H, s, H-8), 10.54 (1H, br,
NH); 13C NMR (100 MHz, DMSO-d6) d 37.2 (J = 20 Hz),
61.3 (J = 11 Hz), 83.0, 85.5 (J = 22 Hz), 95.3
(J = 172 Hz), 117.1, 135.7, 151.4, 154.1, 157.0; HRMS
(FAB+) calcd for C10H13FN5O3 (MH+), 270.1002, found
270.1011.
7. Katayama, S.; Takamatsu, S.; Naito, M.; Tanji, S.;
Ineyama, T.; Izawa, K. J. Fluor. Chem. 2006, 127, 524.
8. (a) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.;
Chucholowski, A. J. Am. Chem. Soc. 1986, 108, 2466; (b)