Y.-L. Zhong et al. / Tetrahedron Letters 47 (2006) 1315–1317
1317
5. Culbertson, T. P. J. Heterocycl. Chem. 1979, 16, 1423–
1424.
amidoxime was dissolved in methanol, DMAD
(1.05 equiv) was added dropwise at ꢀ10 °C, and then
slowly allowed to warm to ambient temperature over
6 h (>98% conversion). The reaction mixture was con-
centrated and then dissolved in o-xylene. The solution
was microwave irradiated8 for 1–2 min and the resulting
slurry was aged at room temperature for 1 h. The crys-
talline solid was isolated by filtration, washed with tolu-
ene, MTBE, and finally 1:1 methanol/0.5 N HCl. The
solid was then dried under vacuum to afford the desired
pyrimidone. A variety of substituted aldoximes includ-
ing aromatic (entries 1–6),10 and functionalized aliphatic
(entries 7–9), and N-protected a-amino amidoximes (en-
tries 10 and 11) were efficiently cyclized to the corre-
sponding pyrimidones in an average isolated yield of
52%.11
6. For reviews, see: (a) Perreux, L.; Loupy, A. Tetrahedron
2001, 57, 9199–9223; (b) Lidstro¨m, P.; Tierney, J.;
Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225–
9283; For recent microwave-assisted reactions, see: (c)
Moreno, A.; Gomez, M. V.; Vazquez, Z.; Hoz, A.; Diaz-
Ortiz, A.; Prieto, P.; Mayoral, J. A.; Pires, E. Synlett 2004,
1959–1963; (d) McIntosh, C. E.; Martinez, I.; Ovaska, T.
V. Synlett 2004, 2579–2581; (e) Davies, H. M. L.;
Beckwith, E. J. J. Org. Chem. 2004, 69, 9241–9247; (f)
Gopalakrishnan, G.; Kasinath, V.; Singh, N. D. P. Org.
Lett. 2002, 4, 781–782; (g) Tanner, D. D.; Kandanarach-
chi, P.; Das, N. C.; Brausen, M.; Vo, C. T.; Camaioni, D.
M.; Franz, J. A. J. Org. Chem. 1998, 63, 4587–4593; (h)
Raner, K. D.; Strauss, C. R.; Trainor, R. W. J. Org.
Chem. 1995, 60, 2456–2460; (i) Martinez, I.; Alford, P. E.;
Ovaska, T. V. Org. Lett. 2005, 7, 1133–1135; (j) Baran, P.
S.; Richter, J. M. J. Am. Chem. Soc. 2005, 127, 15394–
15396.
7. (a) Seijas, J. A.; Vazquez-Tato, M. P.; Carballido-Rebo-
redo, R. J. Org. Chem. 2005, 70, 2855–2858; (b) Gauvreau,
D.; Barriault, L. J. Org. Chem. 2005, 70, 1382–1388; (c)
Das, S. K.; Reddy, K. A.; Roy, J. Synlett 2003, 1607–1610;
(d) Patil, B. S.; Vasanthakumar, G.-R.; Babu, V. V. S. J.
Org. Chem. 2003, 68, 7274–7280; (e) Sudrik, S. G.;
Chavan, S. P.; Chandrakumar, K. R. S.; Pal, S.; Date,
S. K.; Chavan, S. P.; Sonawane, H. R. J. Org. Chem. 2002,
67, 1574–1579; (f) Sanchez-Sancho, F.; Mann, E.; Herra-
don, B. Synlett 2000, 509–513.
In conclusion, we have developed a practical and effi-
cient procedure for the rapid construction of highly
functionalized pyrimidones via microwave irradiation.
Acknowledgement
We thank Dr. Philip J. Pye for helpful discussions.
8. Smith Synthesizer microwave set at 80% of a total output
of 1000 W or with the temperature control set to 185 °C.
9. The control experiment using thermal heat: A solution of
1a (1.00 g) in o-xylene (5 mL) was heated in reflux using an
oil bath for 3.5 h to give >95% conversion. The assay yield
and isolated yield of desired product 1 were 61% and 53%,
respectively.
References and notes
1. O’Brien, D. E.; Weinstock, L. T.; Springer, R. H.; Cheng,
C. C. J. Heterocycl. Chem. 1967, 4, 49–53.
2. (a) Summa, V.; Petrocchi, A.; Matassa, V. G.; Taliani, M.;
Laufer, R.; Francessco, R. D.; Altamura, S.; Pace, P. J.
Med. Chem. 2004, 47, 5336–5339; (b) Stansfield, I.; Avolio,
S.; Colarusso, S.; Gennari, N.; Narjes, F.; Pacini, B.;
Ponzi, S.; Harper, S. Bioorg. Med. Chem. Lett. 2004, 14,
5085–5088.
10. The reported yield for Table 1, entry 6 was 44% (crude) or
21% after recrystallization from xylene (see Ref. 5).
11. All new compounds gave satisfactory analytical and
spectral data in accordance to their structures. Selected
1
3. Wagner, E.; Becan, L.; Nowakowska, E. Bioorg. Med.
Chem. Lett. 2004, 12, 265–272.
data for compound 1: H NMR (400 MHz, DMSO-d6) d:
8.05 (dd, J = 8.7, 5.5 Hz, 2H), 7.33 (t, J = 8.7 Hz, 2H), 3.84
(s, 3H); 13C NMR (100 MHz, DMSO-d6) d: 166.2, 164.0 (d,
J = 248 Hz), 159.9, 130.1, 130.0, 130.1 (d, J = 10 Hz),
129.0, 116.0 (d, J = 22 Hz). Compound 5: 1H NMR
(400 MHz, CDCl3) d: 11.23 (br s, 1H), 10.91 (br s, 1H),
8.61 (br d, J = 4.5 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 7.88
(td, J = 8.0, 1.5 Hz, 1H), 7.44 (dd, J = 8.0, 4.5 Hz, 1H),
4.06 (s, 3H); 13C NMR (100 MHz, CDCl3) d: 169.8, 156.9,
152.0, 148.7, 147.3, 143.7, 137.6, 126.1, 126.0, 121.4, 53.4.
4. (a) Johnson, T. B.; Caldwell, W. T. J. Am. Chem. Soc.
1929, 51, 873–880; (b) Budesinsky, Z.; Jelinek, V.; Prikryl,
J. J. Collect. Czech. Chem. Commun. 1962, 27, 2550–2560;
(c) Sunderland, C. J.; Botta, M.; Aime, S.; Raymond, K.
N. Inorg. Chem. 2001, 40, 6746–6756; (d) Dreher, S. D.;
Ikemoto, N.; Gresham, V.; Liu, J.; Dormer, P. G.;
Balsells, J.; Mathre, D.; Novak, T. J.; Armstrong, J. D.,
III Tetrahedron Lett. 2004, 45, 6023–6025.